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ABSTRACT

Context. Anthropogenic landscape changes have substantial effects on biodiversity and animal
populations worldwide. However, anthropogenic landscape change can take a variety of forms,
and its effects on wildlife species can vary by landscape context and scale. It is therefore critical that
studies of the effects of anthropogenic landscape change on wildlife consider landscape context and
model effects of landscape change at multiple scales. Mesopredators serve as an excellent case study
of scale-dependent and even contradictory effects of anthropogenic landscape change, because
mesopredator populations can respond both positively and negatively to landscape change
depending on its form (e.g. agricultural production, urbanisation) and scale. Aims. The aim of this
study was to model relationships between multiple aspects of anthropogenic landscape change,
including agricultural production and the proliferation of non-native shrubs, and relative abundance
of three mesopredator species: Virginia opossum (Didelphis virginiana), striped skunk (Mephitis
mephitis), and raccoon (Procyon lotor).Methods. We summarised landscape variables at two scales
and built both single-scale and multi-scale models linking relative abundance of mesopredators to
landscape variables. Key results. We found that relative abundance of all three species was most
related to either the transition from natural areas to agricultural areas (brown-to-green gradient) or
the likelihood of presence of non-native shrubs. We also found that responses to anthropogenic
landscape change varied by spatial scale; for instance, skunks and raccoons had higher relative
abundance in parts of Illinois with more forest cover and agriculture, respectively, but avoided more
highly forested and agricultural areas, respectively, at smaller scales. Conclusions. Mesopredator
responses to landscape change were highly variable and scale-dependent, but were generally related
to transitions from forest to agriculture or the presence of non-native shrubs. Implications. Our
study demonstrates the need to model effects of anthropogenic landscape change at multiple scales,
given the differing results that can be achieved when landscape variables are measured at multiple scales.

Keywords: anthropogenic landscape change, invasive plants, landscape context, mesopredators,
northern raccoon, spotlight surveys, striped skunk, Virginia opossum.

Introduction

Human modification of landscapes, including agricultural production, construction of 
roads and buildings, and proliferation of non-native species, poses a major threat to 
biodiversity (Matson et al. 1997; Seto et al. 2012; Venter et al. 2016). Agricultural 
production and intensification have been leading causes of landscape change over the past 
century both globally (Lambin and Meyfroidt 2011; Venter et al. 2016) and in the 
Midwestern USA (Walk et al. 2010; Berry et al. 2017). Agricultural production can 
negatively affect wildlife and ecosystems by increasing habitat fragmentation and 
decreasing habitat connectivity (Cosentino et al. 2011), while also reducing the 
functional diversity of wildlife communities (Flynn et al. 2009). Agricultural production 
also provides anthropogenic food subsidies (Demeny et al. 2019), which can have 
positive effects on synanthropic species but detrimental effects on others (Oro et al. 2013). 
Other aspects of landscape change such as urbanisation can have complex effects on wildlife 
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species, with some effects that are positive (e.g. refuge from 
predators, anthropogenic resources) and some that are 
negative (e.g. habitat loss and fragmentation) (Moll et al. 
2020; Padilla and Sutherland 2021). It is therefore critical 
to understand how species respond to anthropogenic 
change and what aspects of change are most influential. 

The effects of anthropogenic landscape changes on wildlife 
can be indirect and depend on landscape context and scale 
(Berry et al. 2017; Moll et al. 2019). Conceptually, anthropogenic 
landscape change can be characterised along a hard-to-soft 
gradient based on the amount of impervious ground cover 
and along a brown-to-green gradient based on the presence 
of human-modified but open (i.e. not impervious surface) 
landscapes, such as agriculture, vs natural areas (i.e. forests 
or wetlands; Padilla and Sutherland 2021). These gradients 
can have different effects on wildlife species and are often 
context-dependent. For instance, American robin (Turdus 
migratorius) occupancy is consistently related to ‘greenness’ 
of US urban areas but responses to ‘hardness’ are city-
specific (Padilla and Sutherland 2021). Furthermore, the scale 
at which a species responds to major drivers of anthropogenic 
landscape change, including agricultural production and 
urban development, also varies (Gehring and Swihart 2003; 
Moll et al. 2020), as does the magnitude and direction of 
response (Lesmeister et al. 2015). Given the complexity of 
landscape changes and species’ responses to them, it is 
imperative that studies ideally include sufficient data to 
investigate multiple dynamic, temporally variable, and scale-
dependent aspects of landscape change (Moll et al. 2019). 

Mesopredators are an ecologically important group which 
can have large effects on humans and other wildlife (Prugh 
et al. 2009; Ritchie and Johnson 2009). Several North 
American mesopredators, including striped skunk (Mephitis 
mephitis, hereafter skunk), Virginia opossum (Didelphis 
virginiana, hereafter opossum), and northern raccoon 
(Procyon lotor, hereafter raccoon), are synanthropic and 
may respond positively to multiple anthropogenic landscape 
changes, although scale can affect responses to landscape 
features (Gehring and Swihart 2003; Moll et al. 2020). For 
instance, skunks are commonly associated with human 
structures and sometimes with agricultural fields at landscape 
scales (Gehring and Swihart 2003; Lesmeister et al. 2015; 
Allen et al. 2022a). In both urban and rural areas, opossums 
are associated with forests and water sources at local scales 
(Gehring and Swihart 2003; Fidino et al. 2016; Wait et al. 
2020). Raccoons prefer forest cover in rural landscapes (Dijak 
and Thompson 2000; Gehring and Swihart 2003) and often 
use anthropogenic food sources (Demeny et al. 2019). 
Relative abundance metrics for all three species have 
changed alongside landscape changes in Illinois and the 
Midwestern USA, with raccoon relative abundance strongly 
increasing according to multiple metrics, opossum relative 
abundance slightly increasing, and skunk relative abundance 
changing non-linearly but remaining relatively stable (Gehrt 
et al. 2002, 2006; Bauder et al. 2021). Causes of these changes 

are uncertain but may include changing patterns in harvest, 
winter temperatures, and disease, among other factors 
(Gehrt et al. 2002, 2006; Bauder et al. 2021). Given the 
importance of mesopredators in human-modified landscapes, 
it is crucial to understand which aspects of landscape change 
may have affected mesopredator abundance and trends in the 
heavily modified landscapes of Illinois. 

A major consequence of human modification of landscapes 
is the spread of invasive species (Mosher et al. 2009), but 
invasive species are only occasionally addressed in models 
of wildlife distribution and abundance. Invasive species are 
more common in highly disturbed (i.e. low forest cover) 
landscapes and near roads (Fan et al. 2013; Moser et al. 
2016), and invasive shrubs, in particular, can have wide-
ranging effects on wildlife and ecosystems (Pimentel et al. 
2000). These effects range from altering nest predation 
rates on birds (Schmidt and Whelan 1999; Schlossberg and 
King 2010) to attracting rodents and mesopredators (Dutra 
et al. 2011; Vernon et al. 2014). Additionally, proliferation of 
invasive shrub species can influence detection of mesopreda-
tors, because invasive species are often found in low-density 
forests, open areas (i.e. edges), and near roads (Fan et al. 2013; 
Moser et al. 2016), where mesopredators are most common. 

Many different methods have been used to study the 
responses of wildlife distribution and abundance to landscape 
change. Long-term monitoring programs using different 
survey methods (e.g. pellet counts or spotlight surveys) 
provide opportunities to study the effects of landscape change 
over much longer time scales than those of recently developed 
methods (e.g. camera traps). For instance, spotlight and 
roadkill surveys have been conducted in Illinois for over 
four decades and are generally concordant with each other 
and other indices of abundance of mesopredators in Illinois 
(Gehrt et al. 2002; Bauder et al. 2021). However, these 
long-term monitoring programs may suffer from sampling 
biases that necessitate the inclusion of covariates or random 
effects to account for observation error, changes in effort, 
and other possible causes of changes in detectability of species 
(Bauder et al. 2021). 

We used data from long-term spotlight and vegetation 
surveys in Illinois to characterise the effects of multiple 
anthropogenic landscape changes at two scales on the 
relative abundance of three mesopredator species: striped 
skunk, Virginia opossum, and northern raccoon. We built a 
model set of single landscape variables to describe which 
variables best predicted mesopredator relative abundance 
at two scales: the local scale (i.e. how individual segments 
of a spotlight survey route differed from the route); and the 
landscape scale (i.e. how spotlight survey routes differed 
from other spotlight survey routes in Illinois). We also built 
cross-scale models using the top local-scale and landscape-
scale predictors and their interactions to investigate whether 
landscape context mediated local-scale responses to landscape 
change. We expected that skunk relative abundance would be 
greater in areas with higher proportion of agricultural land 
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cover or density of human structures (i.e. housing) at the 
landscape scale (Gehring and Swihart 2003; Lesmeister 
et al. 2015; Crimmins et al. 2016; Allen et al. 2022a). 
Although opossums and raccoons are often associated with 
urban areas (Fidino et al. 2016, 2020; Wait et al. 2020), 
given that the landscape of Illinois is primarily agricultural 
or forested, we expected that opossum relative abundance 
would be greater in areas with high proportions of forest 
cover or water (Gehring and Swihart 2003; Fidino et al. 
2016; Wait et al. 2020) at local scales, and that raccoon 
relative abundance would be greater in areas with high 
proportion of forest cover at local scales due to raccoon 
preferences for forest edges (Dijak and Thompson 2000; 
Gehring and Swihart 2003). We expected that all three 
mesopredator species would exhibit a negative response to 
presence of invasive shrub species, because these species’ 
thick vegetation can leaf out early and obscure detection of 
animals during spotlight surveys. 

Methods

Study area

The study area spanned the US state of Illinois (Fig. 1). Bauder 
et al. (2020) provide a detailed description of Illinois’ land 
cover and communities, which we summarise here. Row-
crop agriculture is the predominant land cover, particularly 
in northwestern and central Illinois, accounting for approxi-
mately 75% of all land cover throughout the state (US 
Department of Agriculture 2017). Agriculture has also been 
a predominant driver of landscape change in Illinois and 

the Midwestern USA over the past century (Walk et al. 
2010; Berry et al. 2017). Forest cover, although rare, is 
increasingly dominant in southern Illinois (Walk et al. 2010). 
The Chicago metropolitan area is in the northeastern portion 
of the state and constitutes the majority of urban development 
(Walk et al. 2010). In addition to the three focal species of 
this study, the study area includes several other carnivore 
species, including red fox (Vulpes vulpes), grey fox (Urocyon 
cinereoargenteus), coyote (Canis latrans), and bobcat (Lynx 
rufus) (Lesmeister et al. 2015). 

Spotlight survey data

Spotlight surveys were conducted from 1981 to 2017 prior to 
leaf-out (21 March–4 April in southern Illinois and 11–25 
April in northern Illinois) (Fig. 1). However, due to the 
limited temporal extent of our landscape change covariates, 
we used only the years 2001–2017 in our analysis. Illinois 
Department of Natural Resources (IDNR) staff drove along 
roads and generally surveyed 40-km routes starting an hour 
after sunset and travelling between 16 and 24 km per hour. 
Each route was divided into 25 segments of approximately 
1.6 km each. In total, 51 routes were surveyed; not every 
route was surveyed every year (45 on average were surveyed 
each year), but consistent methods and effort were used when 
routes were surveyed. Survey-specific covariates included 
date and starting and ending average temperature and 
humidity. For each route segment, the number of opossum, 
skunk, and raccoon individuals were counted. Further details 
can be found in Bauder et al. (2021). 

For each segment, we calculated the approximate midpoint 
(the midpoint between the start of the segment and the start of 

Fig. 1. (a) Map of the continental United States with the state of Illinois highlighted in grey. (b) Study area map with locations of spotlight
survey routes in Illinois, USA.
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the next segment). Where a segment was broken up into 
multiple sub-segments, we calculated the midpoints of each 
sub-segment separately and averaged covariate values 
extracted at those midpoints prior to analysis. We discarded 
six segments for which endpoints were not clear. For the 
purposes of extracting and calculating covariate values, we 
used a 1-km buffer around each segment midpoint. This buffer 
size was chosen to be consistent with previous studies (Wait 
et al. 2018; Fidino et al. 2020) and to capture variation in land 
cover across each segment and surrounding areas. 

Spatial covariates

We used primarily R packages tidyverse (Wickham et al. 
2019), sf (Pebesma 2018), raster (Hijmans 2022), velox 
(Hunziker 2021), and sp (Pebesma and Bivand 2005) in  R  
ver. 4.1.1 (R Core Team 2021) for processing of covariates. 
For each year 2001–2017, we extracted land cover data from 
the National Land Cover Database (NLCD) (Homer et al. 2020) 
within a 1-km buffer around each segment midpoint. We 
extracted land cover data from the latest NLCD data set 
prior to each year; for instance, we used the 2008 NLCD for 
the years 2008–2010 and the 2011 NLCD for the years 
2011–2012. We calculated the proportion of each land cover 
type within each buffer and summarised these proportions 
down to four covariates: the proportion of agricultural land 
cover (NLCD land cover categories 81 and 82); the 
proportion of urban (>20% impervious surface) land cover 
(NLCD land cover categories 22, 23, and 24); the proportion 
of forest cover (NLCD land cover categories 41, 42, and 43); 
and the proportion of water (NLCD land cover categories 11, 
90, and 95). For each year 2001–2017, we also extracted the 
latest available housing density (units/km2) from the SILVIS 
Lab housing density data layer (Helmers 2021) within the 
1-km buffer around each segment midpoint. We extracted 
density of primary and secondary roads (linear km of road/km2) 
from the US Census Bureau’s TIGER dataset (US Census 
Bureau 2019). We calculated landscape-scale averages of 
housing density and road density in the same manner as for 
land cover proportions (Supplementary Figs S1–S6). 

To quantify invasive shrub species’ potential presence 
along spotlight survey routes, we built a presence–absence 
model for 11 shrub species using long-term monitoring data 
from the Illinois Critical Trends Assessment Program (CTAP). 
The CTAP, administered by the Illinois Natural History Survey 
since 1997, includes data on occurrence and density of invasive 
shrub species at 574 sites throughout Illinois (Fig. S7). 
Monitoring protocols are described in detail in Molano-Flores 
(2002) but we summarise them briefly here. Each site selected 
for CTAP was surveyed once every 5 years. Sites were selected 
using area-weighted sampling of townships across Illinois. 
Within each township, grassland, wetland, and forest sites 
were selected using habitat-specific criteria (Molano-Flores 
2002). At forest sites, shrub and tree plots were surveyed 

along three 50-m transects. At wetland and grassland sites, 
shrub and tree plots were surveyed along one 41-m transect. 

We used shrub stem density data from shrub plots for the 
following 11 invasive shrub species or species groups: 
honeysuckles (Lonicera × bella, Lonicera japonica, Lonicera 
maackii, Lonicera prolifera, Lonicera tatarica, Lonicera species 
that were identified only to genus); Russian and autumn olive 
(Elaeagnus angustifolia and Elaeagnus umbellata, respectively; 
because 106 out of 110 observations of olives were autumn 
olive, we refer to this group as autumn olive); buckthorns 
(Rhamnus cathartica, Rhamnus frangula); and multiflora 
rose (Rosa multiflora). We recorded a species as present at a 
site if its shrub stem density was greater than 0, and absent 
otherwise. We built a presence–absence model for each 
species group (honeysuckle, autumn olive, buckthorn, or 
multiflora rose) and an overall presence–absence model for 
all 11 invasive shrubs combined using binomial logistic 
regression and including year, longitude, latitude, a longitude– 
latitude interaction, and a custom categorical land cover 
variable we compiled because CTAP habitat classifications 
do not readily translate to the land cover types we used 
in our models of skunk, opossum, and raccoon relative 
abundance. Specifically, we summarised underlying NLCD 
land cover categories at CTAP sites as ‘Forest’ (NLCD land 
cover categories 41, 42, 43, and 90), ‘Grassland’ (NLCD land 
cover categories 21, 81, and 82), or ‘Other’ (all other NLCD 
land cover categories), using the land cover category extracted 
at the latitude and longitude of each CTAP site. We then 
predicted the probability of each invasive species group’s 
presence or overall invasive shrub presence at each spotlight 
survey route segment midpoint for each custom categorical 
land cover type. We calculated overall probability of invasive 
species’ presence within each 1-km buffer, for each invasive 
species group and for all invasive species combined, by taking 
a weighted average of land-cover-type-specific predictions for 
the segment midpoint weighted by the proportion of each 
custom categorical land cover type within the buffer. This 
resulted in local-scale and landscape-scale covariates describing 
probability of invasive species’ presence for honeysuckles, 
autumn olive, buckthorns, and multiflora rose, and all 11 
invasive shrub species combined (Figs S8–S12). 

We calculated spatial covariates at two scales, a local scale 
and a landscape scale. At the local scale, spatial covariates 
were rescaled so that each covariate measured how different 
the covariate value in a given segment was to the average for 
that route and year (e.g. how different the proportion of 
agriculture at one segment in Adams County in 2001 was 
from the average proportion of agriculture on the Adams 
County route in 2001). At the landscape scale, we took the 
mean of each covariate described above for each route and 
year, then rescaled the means so that the landscape-scale 
covariate measured how different each route was for the 
average value for that year (e.g. how different the proportion 
of agriculture along the Adams County route in 2001 was from 
the mean proportion of agriculture of all spotlight survey 
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routes in 2001). This resulted in summaries, for each segment 
for which we had counts, of how that segment differed from 
the average for the route and how the route in which the 
segment was located differed from the average from all 
spotlight survey routes in the same year. These local- and 
landscape-scale covariates were used in the same models of 
spotlight counts, with segment-level counts as the response, 
to compare the effects of local- and landscape-level statewide 
variation in habitat. We describe the scaling process further 
below in Statistical analysis, and summaries of unscaled 
covariate values are given in Table S1. 

Statistical analysis

We used a total of 17 646 observations in our analysis. We fit 
generalised linear mixed models for each mesopredator 
species with a Poisson likelihood using package lme4 (Bates 
et al. 2015) in R ver. 4.1.1 (R Core Team 2021). All 
candidate models, including a model without landscape 
covariates (‘null model’), contained linear and quadratic 
fixed effects of year, segment of the route surveyed, average 
humidity, average temperature, and day of year, and a 
random effect of route. These effects were included to 
account for survey, ecological, and meteorological processes 
that might affect detection probability. For instance, average 
humidity and temperature reflected general meteorological 
conditions that might affect animal behaviour and visibility, 
day of year represented possible effects of time-varying survey 
conditions such as the timing of leaf-out, which could obscure 
animals, and the random effect of route captured other 
possible, unmodelled route-specific variables that might 
affect both relative abundance and detection. As observers 
likely varied in their experience level, this variation in 
experience level might be accounted for partially by a 
random effect of observer. However, observer was often 
confounded with route, because many observers only 
surveyed one to two routes and most routes had relatively few 
observers over the study period. Therefore, we included only 
a random effect of route. We fitted a total of 26 candidate 
models for each mesopredator species. The models fell into 
seven categories of landscape composition and potential 
change drivers of mesopredator abundance (Table S2): urban 
land cover; agriculture; forest; water; human structures (the 
effects of housing density and road density); invasive 
species (the effects of the probability of each invasive species 
group’s presence or overall invasive species presence); or 
other (the base model and a model of latitude, longitude, 
and their interaction). We first fitted models of each covariate 
at the local and landscape scales separately. We then combined 
the top local- and landscape-scale covariates (as measured by 
AIC) into a single model and compared models with and 
without their interaction to the local-scale-only and landscape-
scale-only models using AIC. The goal of this analysis was not 
to describe all factors affecting mesopredator relative 
abundance, but to identify the factors with the greatest 

explanatory ability at each scale and to understand whether 
there was any interaction between the top drivers of meso-
predator relative abundance between scales. We reported 
all models with ΔAIC < 2 as top models and ΔAIC < 8 as  
competitive models that are potentially ecologically relevant 
(Symonds and Moussalli 2011). We calculated AIC weight (w) 

e−0.5×ΔAICmas wm = for each model m.Σm∈Me−0.5×ΔAICm 

We scaled year, average temperature, average humidity, 
and mile surveyed by subtracting the mean and dividing by 
the standard deviation for the whole data set included in 
our analysis. We scaled day of year by subtracting the mean 
date and dividing by the standard deviation for all dates of 
surveys on a given route (e.g. day of year for Adams County 
surveys was scaled by the mean and standard deviation of 
all survey dates for Adams County across all years). We 
scaled landscape-scale covariates by subtracting the mean 
and dividing by the standard deviation of the covariate at 
all routes in a given year (e.g. we scaled landscape-scale 
proportion of urban land cover in 2001 using the mean and 
standard deviation of average proportion of urban land 
cover along routes in 2001). We scaled local-scale covariates 
by subtracting the mean and dividing by the standard 
deviation for the same route and year (e.g. we scaled local-
scale proportion of urban land cover for Adams County in 
2001 using the mean and standard deviation for Adams 
County in 2001). We scaled local-scale covariates in this way 
to test whether there was a local-scale effect of a covariate 
regardless of landscape context that could be compared 
across survey routes and years. 

Results

Striped skunk models

The top model for skunk included local-scale proportion of 
forest cover and landscape-scale probability of autumn olive 
presence (w = 0.72; Table 1). Skunk relative abundance 
decreased as local-scale proportion of forest cover increased 
(β = −0.21, s.e. = 0.04) and increased as landscape-scale 
probability of autumn olive presence increased (β = 0.40, 
s.e. = 0.12) (Table S3, Fig. 2). After accounting for landscape-
scale covariates, skunk relative abundance also changed non-
linearly over time, and had non-linear relationships with 
average temperature humidity and mile surveyed (Table S3). 

Table 1. Top (ΔAIC < 2) and competitive (ΔAIC < 8) models for
relative abundance of striped skunks in Illinois, ranked by AIC weight (w).

K AIC ΔAIC w

Proportion of forest (local) + probability 14 6158.50 0.00 0.72
of autumn olive (landscape)

Proportion of forest (local) × probability 15 6160.50 2.00 0.26
of autumn olive (landscape)

Proportion of forest (local) 13 6166.20 7.70 0.02
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Fig. 2. Predicted relationship of mean striped skunk count per spotlight survey route segment (~1.6 km per segment) to (a) local-scale
proportion of forest and (b) landscape-scale probability of autumn olive in the year 2017. All other variables in each plot are held at values of
0 (average temperature and humidity, average survey date for the route, etc.). Ribbons are the 95% confidence intervals for the predictions
accounting for error from fixed effects only.

Virginia opossum models

The top model for opossum included local-scale probability of 
multiflora rose presence and landscape-scale probability of 
autumn olive presence (w = 0.63; Table 2). Opossum relative 
abundance increased as local-scale probability of multiflora 
rose increased (β = 0.07, s.e. = 0.02) and increased as 
landscape-scale probability of autumn olive presence 
increased (β = 0.60, s.e. = 0.09) (Table S4, Fig. 3). After 
accounting for landscape covariates, opossum relative 
abundance also increased non-linearly over time, increased as 
average humidity increased, and had a non-linear relationship 
with average temperature and mile surveyed (Table S4). 

Northern raccoon models

The top models for raccoon were a model that included both 
local- and landscape-scale proportion of agricultural land 
cover (w = 0.62; Table 3), and the model with the interaction 
(w = 0.38; Table 3). Raccoon relative abundance decreased as 
local-scale proportion of agricultural land cover increased 
(β = −0.06, s.e. = 0.007) and increased as landscape-scale 

Table 2. Top (ΔAIC < 2) and competitive (ΔAIC < 8) models for
relative abundance of Virginia opossums in Illinois, ranked by AIC
weight (w).

K AIC ΔAIC w

Probability of multiflora rose (local) + 14 13 828.96 0.00 0.63
probability of autumn olive (landscape)

Probability of multiflora rose (local) × 15 13 830.27 1.31 0.33
probability of autumn olive (landscape)

Longitude × latitude 15 13 834.72 5.76 0.04

Probability of autumn olive (landscape) 13 13 836.95 7.98 0.01

proportion of agricultural land cover increased (β = 0.19, 
s.e. = 0.06) (Table S5, Fig. 4). After accounting for landscape 
covariates, raccoon relative abundance also increased non-
linearly over time, and had non-linear relationships with 
average temperature, mile surveyed, and survey date 
(Table S5). 

Discussion

We found that the factors best explaining skunk, opossum, and 
raccoon relative abundance were highly variable and scale-
dependent (Figs S13–S15). Skunk relative abundance 
decreased on mile segments with a higher proportion of 
forest cover than the average mile on the route. Given the 
negative correlation of local-scale proportion of forest cover 
and agriculture along spotlight survey routes, this suggests 
that skunks may have higher relative abundance in areas with 
high relative proportions of agriculture. Contrary to previous 
results, however, we found that skunks may be responding 
more to higher proportions of agriculture relative to the 
surrounding landscape (i.e. local-scale variation in agriculture), 
rather than responding to the actual proportion of agricul-
ture on the landscape (landscape-scale variation in agriculture) 
as expected (Gehring and Swihart 2003; Lesmeister et al. 
2015). Opossum relative abundance was highly correlated 
with invasive species’ probabilities of presence at multiple 
scales; although proportion of forest cover had lower 
explanatory ability than many invasive species’ probabilities 
of presence, many of these invasive species’ probabilities were 
highly correlated with forest cover. Raccoons displayed an 
opposite response to agricultural land cover to that of skunks 
at the local scale, occurring at higher relative abundances in 
areas with higher proportion of forest cover than the 
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Fig. 3. Predicted relationship of mean Virginia opossum count per spotlight survey route segment (~1.6 km per segment) to (a) local-scale
probability of multiflora rose and (b) landscape-scale probability of autumn olive in the year 2017. All other variables in each plot are held at
values of 0 (average temperature and humidity, average survey date for the route, etc.). Ribbons are the 95% confidence intervals for the
predictions accounting for error from fixed effects only.

Table 3. Top (ΔAIC < 2) and competitive (ΔAIC < 8) models for
relative abundance of northern raccoons in Illinois, ranked by AIC
weight (w).

K AIC ΔAIC w

Proportion of agriculture (local) + 14 52 767.86 0.00 0.62
proportion of agriculture (landscape)

Proportion of agriculture (local) × 15 52 768.84 0.98 0.38
proportion of agriculture (landscape)

surrounding landscape. Surprisingly, raccoons responded 
positively to proportion of agriculture at the landscape scale, 
contrary to several previous results (Dijak and Thompson 
2000; Gehring and Swihart 2003). 
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Overall, the results suggest that a brown-to-green gradient 
(e.g. agriculture to natural areas; Padilla and Sutherland 
(2021)) is a major factor in variation in mesopredator relative 
abundance in Illinois. The brown-to-green gradient operated 
at both scales, though there was little evidence of interaction 
between scales (e.g. mediation of local-scale responses by 
landscape context or actual composition). Considering scale 
in responses to anthropogenic landscape change gradients such 
as the brown-to-green gradient is crucial because responses to 
the brown-to-green gradient could be opposite at different 
scales. For instance, predicted raccoon relative abundance 
was lower in agricultural areas at local scales but higher in 
agricultural areas at landscape scales. The hard-to-soft gradient 
was likely not a major factor along spotlight routes – spotlight 

Fig. 4. Predicted relationship of mean northern raccoon count per spotlight survey route segment (~1.6 km per segment) to (a) local-
scale proportion of agriculture and (b) landscape-scale proportion of agriculture in the year 2017. All other variables in each plot are held at
values of 0 (average temperature and humidity, average survey date for the route, etc.). Ribbons are the confidence intervals for the
predictions accounting for error from fixed effects only.
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routes were generally located in rural areas where levels of 
urbanisation and housing density were relatively low (Figs S1 
and S5). 

Surprisingly, invasive species’ probability of presence 
often had similar or higher explanatory power relative to 
local-scale proportion of forest or agricultural land cover, 
particularly for opossums, and had generally positive effects 
on relative abundance of our study species, contrary to our 
predictions (Tables S6–S8). Skunk and opossum relative 
abundance were strongly correlated with autumn olive 
presence at the landscape scale. Landscape-scale probability 
of autumn olive presence is negatively correlated with 
latitude and positively correlated with proportion of forest 
cover; their combination may be the best explanation for 
opossum relative abundance (Kanda et al. 2006; Wait et al. 
2020). Thus, landscape-scale probability of autumn olive 
presence is likely in the top model for opossum because it 
is more information-rich as a covariate than either latitude 
or proportion of agriculture or forest. There is not as strong 
evidence for positive effects of latitude and forest cover on 
skunks in the literature, but the landscape-scale probability 
of autumn olive presence by itself has relatively little 
explanatory power for skunk relative abundance (Table S6). 
Thus, the effect of landscape-scale probability of autumn olive 
presence is likely describing the increased relative abundance 
of skunks and especially opossums in southern Illinois, a 
relatively warm and forested part of the state. However, the 
presence of the local-scale probability of multiflora rose 
presence among the top models for opossum suggests that 
there may be some small-scale structural aspect of invasive 
species’ presence to which opossums are responding. There 
is some evidence that opossums increase activity in areas 
with invasive shrubs, including buckthorn and honeysuckle 
species (Dutra et al. 2011; Vernon et al. 2014). It is possible 
that in parts of southern Illinois with lower population 
density and higher forest cover, shrubby natural areas that 
are increasingly affected by invasive species offer food or 
refuge opportunities that outweigh the advantages of more 
human-modified areas. Moreover, either the positive effects 
of presence of invasive shrub species on opossums and 
skunks, or their correlation with habitats suitable for opossums 
and skunks in Illinois, apparently outweigh any of the potential 
negative effects of early leaf-out and thick vegetation on 
detection of mesopredators along spotlight survey routes 
with a high probability of invasive species’ presence. 

Our results for skunk, opossum, and raccoon relative 
abundance models and models of invasive species’ presence 
are likely influenced by the landscape context of both the 
spotlight and vegetation surveys. Many of the spotlight 
surveys were conducted in rural areas where the proportion 
of urban land cover was low (2.7% of land cover within 
1-km segment midpoint buffers on average). Thus, it may be 
difficult to compare predictors of relative abundance from 
spotlight surveys to predictors of occupancy from camera traps 
in more urbanised areas (Wang et al. 2015; Wait et al. 2018; 

Fidino et al. 2020), and urban land cover and housing 
density may be so low along many spotlight survey routes that 
their effects, if any, would be difficult to detect. Given the 
relatively low urban land cover along many spotlight survey 
routes, resource selection trade-offs for mesopredators along 
these routes would likely involve balancing anthropogenic 
food sources from primarily agricultural areas with foraging 
opportunities in or near forests with higher prey abundance, 
rather than attraction to or avoidance of heavily urbanised 
areas. It is also possible that invasive shrubs’ presence at 
CTAP sites may not reflect their presence within the broader 
landscape. CTAP surveys include forest, grassland, and 
wetland sites for every sampled location, but forest locations 
are much more likely to be relatively small forest fragments in 
northern Illinois than in southern Illinois, and wetland and 
grassland sites may also be located in different kinds of 
habitats throughout the state based on what sorts of grass-
lands are available (e.g. natural grasslands vs hayfields vs 
cemeteries). Invasion routes for invasive shrubs may vary 
throughout the state. Thus, invasive shrubs may be present 
along spotlight survey routes even in areas where the pre-
dicted probability of presence is low. This could be verified 
along some spotlight survey routes to improve predicted 
probability of presence, or a presence–absence model could 
be built using more sources of data (e.g. iNaturalist.com 
records). 

In addition to landscape context, it is possible that 
intraguild species interactions affected the relative abundance 
of skunks, opossums, and raccoons along spotlight survey 
routes in Illinois. Skunks are known to co-occur with grey 
foxes across the latter’s range in the contiguous USA (Allen 
et al. 2022b), and raccoons tended to be detected along 
with coyotes and bobcats in southern Illinois (Lesmeister 
et al. 2015). Coyotes, red foxes, grey foxes, and bobcats all 
occur in Illinois, and could be influencing the distributions 
of the smaller carnivores we studied. However, intraguild 
interactions are highly complex, and the spotlight data used 
in this study face limitations in terms of study design that 
make ecological inference about species interactions difficult. 

Although the spotlight data used in this study provide a 
valuable long-term (2001–2017) dataset to study factors 
affecting relative abundance, multiple limitations in both 
the data and modelling require that the results be interpreted 
with caution. The primary limitation in the data set is that the 
survey design did not allow us to account for imperfect 
detection, which informed the choice of generalised linear 
models for modelling relative abundance rather than abundance. 
In general, relative abundance may not scale linearly with 
abundance, particularly when detection probability is not 
accounted for, so our results should not be interpreted as 
inference on abundance. Survey routes were only run once 
per year, at most, and no auxiliary data on time-to-detection 
or distance to detected individuals were collected, thus 
eliminating N-mixture (Royle 2004), distance sampling 
(Ruette et al. 2003), or time-to-detection (Strebel et al. 2021) 
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models. The lack of detection probability in our models also 
means that it is impossible to fully differentiate between effects 
of landscape covariates on abundance and detection. For 
instance, the result that skunk relative abundance increased as 
forest cover decreased may be due both to skunks’ attraction 
to agricultural and other human-dominated landscapes and to 
a decreased ability to detect skunks in forested areas. 
However, given that the results of our models for opossum 
and skunk largely followed predictions from studies that 
accounted for detection probability (Lesmeister et al. 2015; 
Wait et al. 2020; Allen et al. 2022b), we believe that our results 
are still valid. However, we recommend altering spotlight 
survey designs to account for distance to individuals, incorpo-
rate repeat surveys, or integrate time-to-detection (Strebel et al. 
2021), allowing for true abundance to be estimated instead of 
relative abundance. 

Among factors included in the models to explicitly to 
account for variation in detection, we found that aspects of 
spotlight survey timing and weather conditions may affect 
observed relative abundance of mesopredators. Predicted 
skunk relative abundance was highest when average tempera-
ture was moderate and as average humidity increased (though 
this effect was non-linear). Predicted opossum relative 
abundance was highest when surveys were conducted earlier 
than the average survey date for a given route, when average 
humidity was higher and average temperature was moderate. 
Predicted raccoon relative abundance was highest around 
average survey dates for a given route, when average 
temperature was moderate and when average humidity was 
higher. Relative abundance had a non-linear relationship with 
mile segment surveyed for all three species, with negative 
coefficients implying that detection peaked near the middle 
of surveys. Illinois spotlight survey protocols are based on 
humidity and temperature recommendations from Rybarczyk 
(1978), who only calculated correlations between temperature 
and humidity and counts from spotlight surveys and thus did 
not account for possible non-linear effects of humidity and 
temperature. Therefore, temperature and average humidity 
recommendations for spotlight surveys may need to be 
adjusted to maximise the probability of detecting mesopredators, 
especially because these effects may be non-linear and thus 
better represented by ranges of temperatures than minimum 
temperatures. 

In summary, we modelled relationships between skunk, 
opossum, and raccoon relative abundance and various aspects 
of anthropogenic landscape change using spotlight surveys in 
Illinois. The results suggest that all three mesopredator 
species may be responding to the brown-to-green gradient 
in Illinois at multiple scales, or responding to invasive 
species’ probabilities of presence that are themselves highly 
correlated with brown-to-green gradients. Our results support 
the idea that local landscape effects should be put in the 
context of broader surrounding landscapes, and that potential 
interactions between local and landscape scales should be 
investigated (Fidino et al. 2020). Our results also suggest 

that invasive shrubs’ presence or probability of presence may 
be an aspect of landscape change that can affect mesopredator 
presence and abundance at multiple spatial scales. More 
broadly, our results demonstrate the complexity of landscape 
change and how effects of landscape change on mesopredators 
can depend on the landscape context, such as the degree of 
human footprint from urbanisation and agriculture in the 
surrounding landscape. 

Supplementary material

Supplementary material is available online. 
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