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ABSTRACT

Context. Anthropogenic landscape changes have substantial effects on biodiversity and animal
populations worldwide. However, anthropogenic landscape change can take a variety of forms,
and its effects on wildlife species can vary by landscape context and scale. It is therefore critical that
studies of the effects of anthropogenic landscape change on wildlife consider landscape context and
model effects of landscape change at multiple scales. Mesopredators serve as an excellent case study
of scale-dependent and even contradictory effects of anthropogenic landscape change, because
mesopredator populations can respond both positively and negatively to landscape change
depending on its form (e.g. agricultural production, urbanisation) and scale. Aims. The aim of this
study was to model relationships between multiple aspects of anthropogenic landscape change,
including agricultural production and the proliferation of non-native shrubs, and relative abundance
of three mesopredator species: Virginia opossum (Didelphis virginiana), striped skunk (Mephitis
mephitis), and raccoon (Procyon lotor).Methods.We summarised landscape variables at two scales
and built both single-scale and multi-scale models linking relative abundance of mesopredators to
landscape variables. Key results. We found that relative abundance of all three species was most
related to either the transition from natural areas to agricultural areas (brown-to-green gradient) or
the likelihood of presence of non-native shrubs. We also found that responses to anthropogenic
landscape change varied by spatial scale; for instance, skunks and raccoons had higher relative
abundance in parts of Illinois with more forest cover and agriculture, respectively, but avoided more
highly forested and agricultural areas, respectively, at smaller scales. Conclusions. Mesopredator
responses to landscape change were highly variable and scale-dependent, but were generally related
to transitions from forest to agriculture or the presence of non-native shrubs. Implications.Our
study demonstrates the need to model effects of anthropogenic landscape change at multiple scales,
given the differing results that can be achieved when landscape variables are measured at multiple scales.

Keywords: anthropogenic landscape change, invasive plants, landscape context, mesopredators,
northern raccoon, spotlight surveys, striped skunk, Virginia opossum.

Introduction

Human modification of landscapes, including agricultural production, construction of
roads and buildings, and proliferation of non-native species, poses a major threat to
biodiversity (Matson et al. 1997; Seto et al. 2012; Venter et al. 2016). Agricultural
production and intensification have been leading causes of landscape change over the past
century both globally (Lambin and Meyfroidt 2011; Venter et al. 2016) and in the
Midwestern USA (Walk et al. 2010; Berry et al. 2017). Agricultural production can
negatively affect wildlife and ecosystems by increasing habitat fragmentation and
decreasing habitat connectivity (Cosentino et al. 2011), while also reducing the
functional diversity of wildlife communities (Flynn et al. 2009). Agricultural production
also provides anthropogenic food subsidies (Demeny et al. 2019), which can have
positive effects on synanthropic species but detrimental effects on others (Oro et al. 2013).
Other aspects of landscape change such as urbanisation can have complex effects onwildlife
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species, with some effects that are positive (e.g. refuge from
predators, anthropogenic resources) and some that are
negative (e.g. habitat loss and fragmentation) (Moll et al.
2020; Padilla and Sutherland 2021). It is therefore critical
to understand how species respond to anthropogenic
change and what aspects of change are most influential.

The effects of anthropogenic landscape changes onwildlife
can be indirect and depend on landscape context and scale
(Berry et al. 2017;Moll et al. 2019). Conceptually, anthropogenic
landscape change can be characterised along a hard-to-soft
gradient based on the amount of impervious ground cover
and along a brown-to-green gradient based on the presence
of human-modified but open (i.e. not impervious surface)
landscapes, such as agriculture, vs natural areas (i.e. forests
or wetlands; Padilla and Sutherland 2021). These gradients
can have different effects on wildlife species and are often
context-dependent. For instance, American robin (Turdus
migratorius) occupancy is consistently related to ‘greenness’
of US urban areas but responses to ‘hardness’ are city-
specific (Padilla and Sutherland 2021). Furthermore, the scale
at which a species responds to major drivers of anthropogenic
landscape change, including agricultural production and
urban development, also varies (Gehring and Swihart 2003;
Moll et al. 2020), as does the magnitude and direction of
response (Lesmeister et al. 2015). Given the complexity of
landscape changes and species’ responses to them, it is
imperative that studies ideally include sufficient data to
investigate multiple dynamic, temporally variable, and scale-
dependent aspects of landscape change (Moll et al. 2019).

Mesopredators are an ecologically important group which
can have large effects on humans and other wildlife (Prugh
et al. 2009; Ritchie and Johnson 2009). Several North
American mesopredators, including striped skunk (Mephitis
mephitis, hereafter skunk), Virginia opossum (Didelphis
virginiana, hereafter opossum), and northern raccoon
(Procyon lotor, hereafter raccoon), are synanthropic and
may respond positively to multiple anthropogenic landscape
changes, although scale can affect responses to landscape
features (Gehring and Swihart 2003; Moll et al. 2020). For
instance, skunks are commonly associated with human
structures and sometimes with agricultural fields at landscape
scales (Gehring and Swihart 2003; Lesmeister et al. 2015;
Allen et al. 2022a). In both urban and rural areas, opossums
are associated with forests and water sources at local scales
(Gehring and Swihart 2003; Fidino et al. 2016; Wait et al.
2020). Raccoons prefer forest cover in rural landscapes (Dijak
and Thompson 2000; Gehring and Swihart 2003) and often
use anthropogenic food sources (Demeny et al. 2019).
Relative abundance metrics for all three species have
changed alongside landscape changes in Illinois and the
Midwestern USA, with raccoon relative abundance strongly
increasing according to multiple metrics, opossum relative
abundance slightly increasing, and skunk relative abundance
changing non-linearly but remaining relatively stable (Gehrt
et al. 2002, 2006; Bauder et al. 2021). Causes of these changes

are uncertain but may include changing patterns in harvest,
winter temperatures, and disease, among other factors
(Gehrt et al. 2002, 2006; Bauder et al. 2021). Given the
importance of mesopredators in human-modified landscapes,
it is crucial to understand which aspects of landscape change
may have affected mesopredator abundance and trends in the
heavily modified landscapes of Illinois.

A major consequence of human modification of landscapes
is the spread of invasive species (Mosher et al. 2009), but
invasive species are only occasionally addressed in models
of wildlife distribution and abundance. Invasive species are
more common in highly disturbed (i.e. low forest cover)
landscapes and near roads (Fan et al. 2013; Moser et al.
2016), and invasive shrubs, in particular, can have wide-
ranging effects on wildlife and ecosystems (Pimentel et al.
2000). These effects range from altering nest predation
rates on birds (Schmidt and Whelan 1999; Schlossberg and
King 2010) to attracting rodents and mesopredators (Dutra
et al. 2011; Vernon et al. 2014). Additionally, proliferation of
invasive shrub species can influence detection of mesopreda-
tors, because invasive species are often found in low-density
forests, open areas (i.e. edges), and near roads (Fan et al. 2013;
Moser et al. 2016), where mesopredators are most common.

Many different methods have been used to study the
responses of wildlife distribution and abundance to landscape
change. Long-term monitoring programs using different
survey methods (e.g. pellet counts or spotlight surveys)
provide opportunities to study the effects of landscape change
overmuch longer time scales than those of recently developed
methods (e.g. camera traps). For instance, spotlight and
roadkill surveys have been conducted in Illinois for over
four decades and are generally concordant with each other
and other indices of abundance of mesopredators in Illinois
(Gehrt et al. 2002; Bauder et al. 2021). However, these
long-term monitoring programs may suffer from sampling
biases that necessitate the inclusion of covariates or random
effects to account for observation error, changes in effort,
and other possible causes of changes in detectability of species
(Bauder et al. 2021).

We used data from long-term spotlight and vegetation
surveys in Illinois to characterise the effects of multiple
anthropogenic landscape changes at two scales on the
relative abundance of three mesopredator species: striped
skunk, Virginia opossum, and northern raccoon. We built a
model set of single landscape variables to describe which
variables best predicted mesopredator relative abundance
at two scales: the local scale (i.e. how individual segments
of a spotlight survey route differed from the route); and the
landscape scale (i.e. how spotlight survey routes differed
from other spotlight survey routes in Illinois). We also built
cross-scale models using the top local-scale and landscape-
scale predictors and their interactions to investigate whether
landscape context mediated local-scale responses to landscape
change. We expected that skunk relative abundance would be
greater in areas with higher proportion of agricultural land
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cover or density of human structures (i.e. housing) at the
landscape scale (Gehring and Swihart 2003; Lesmeister
et al. 2015; Crimmins et al. 2016; Allen et al. 2022a).
Although opossums and raccoons are often associated with
urban areas (Fidino et al. 2016, 2020; Wait et al. 2020),
given that the landscape of Illinois is primarily agricultural
or forested, we expected that opossum relative abundance
would be greater in areas with high proportions of forest
cover or water (Gehring and Swihart 2003; Fidino et al.
2016; Wait et al. 2020) at local scales, and that raccoon
relative abundance would be greater in areas with high
proportion of forest cover at local scales due to raccoon
preferences for forest edges (Dijak and Thompson 2000;
Gehring and Swihart 2003). We expected that all three
mesopredator species would exhibit a negative response to
presence of invasive shrub species, because these species’
thick vegetation can leaf out early and obscure detection of
animals during spotlight surveys.

Methods

Study area

The study area spanned the US state of Illinois (Fig. 1). Bauder
et al. (2020) provide a detailed description of Illinois’ land
cover and communities, which we summarise here. Row-
crop agriculture is the predominant land cover, particularly
in northwestern and central Illinois, accounting for approxi-
mately 75% of all land cover throughout the state (US
Department of Agriculture 2017). Agriculture has also been
a predominant driver of landscape change in Illinois and

the Midwestern USA over the past century (Walk et al.
2010; Berry et al. 2017). Forest cover, although rare, is
increasingly dominant in southern Illinois (Walk et al. 2010).
The Chicago metropolitan area is in the northeastern portion
of the state and constitutes themajority of urban development
(Walk et al. 2010). In addition to the three focal species of
this study, the study area includes several other carnivore
species, including red fox (Vulpes vulpes), grey fox (Urocyon
cinereoargenteus), coyote (Canis latrans), and bobcat (Lynx
rufus) (Lesmeister et al. 2015).

Spotlight survey data

Spotlight surveys were conducted from 1981 to 2017 prior to
leaf-out (21 March–4 April in southern Illinois and 11–25
April in northern Illinois) (Fig. 1). However, due to the
limited temporal extent of our landscape change covariates,
we used only the years 2001–2017 in our analysis. Illinois
Department of Natural Resources (IDNR) staff drove along
roads and generally surveyed 40-km routes starting an hour
after sunset and travelling between 16 and 24 km per hour.
Each route was divided into 25 segments of approximately
1.6 km each. In total, 51 routes were surveyed; not every
route was surveyed every year (45 on average were surveyed
each year), but consistent methods and effort were used when
routes were surveyed. Survey-specific covariates included
date and starting and ending average temperature and
humidity. For each route segment, the number of opossum,
skunk, and raccoon individuals were counted. Further details
can be found in Bauder et al. (2021).

For each segment, we calculated the approximatemidpoint
(themidpoint between the start of the segment and the start of
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Fig. 1. (a) Map of the continental United States with the state of Illinois highlighted in grey. (b) Study area map with locations of spotlight
survey routes in Illinois, USA.
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the next segment). Where a segment was broken up into
multiple sub-segments, we calculated the midpoints of each
sub-segment separately and averaged covariate values
extracted at those midpoints prior to analysis. We discarded
six segments for which endpoints were not clear. For the
purposes of extracting and calculating covariate values, we
used a 1-kmbuffer around each segmentmidpoint. This buffer
size was chosen to be consistent with previous studies (Wait
et al. 2018; Fidino et al. 2020) and to capture variation in land
cover across each segment and surrounding areas.

Spatial covariates

We used primarily R packages tidyverse (Wickham et al.
2019), sf (Pebesma 2018), raster (Hijmans 2022), velox
(Hunziker 2021), and sp (Pebesma and Bivand 2005) in R
ver. 4.1.1 (R Core Team 2021) for processing of covariates.
For each year 2001–2017, we extracted land cover data from
theNational Land Cover Database (NLCD) (Homer et al. 2020)
within a 1-km buffer around each segment midpoint. We
extracted land cover data from the latest NLCD data set
prior to each year; for instance, we used the 2008 NLCD for
the years 2008–2010 and the 2011 NLCD for the years
2011–2012. We calculated the proportion of each land cover
type within each buffer and summarised these proportions
down to four covariates: the proportion of agricultural land
cover (NLCD land cover categories 81 and 82); the
proportion of urban (>20% impervious surface) land cover
(NLCD land cover categories 22, 23, and 24); the proportion
of forest cover (NLCD land cover categories 41, 42, and 43);
and the proportion of water (NLCD land cover categories 11,
90, and 95). For each year 2001–2017, we also extracted the
latest available housing density (units/km2) from the SILVIS
Lab housing density data layer (Helmers 2021) within the
1-km buffer around each segment midpoint. We extracted
density of primary and secondary roads (linear km of road/km2)
from the US Census Bureau’s TIGER dataset (US Census
Bureau 2019). We calculated landscape-scale averages of
housing density and road density in the same manner as for
land cover proportions (Supplementary Figs S1–S6).

To quantify invasive shrub species’ potential presence
along spotlight survey routes, we built a presence–absence
model for 11 shrub species using long-term monitoring data
from the Illinois Critical Trends Assessment Program (CTAP).
The CTAP, administered by the Illinois Natural History Survey
since 1997, includes data on occurrence and density of invasive
shrub species at 574 sites throughout Illinois (Fig. S7).
Monitoring protocols are described in detail in Molano-Flores
(2002) but we summarise them briefly here. Each site selected
for CTAPwas surveyed once every 5 years. Sites were selected
using area-weighted sampling of townships across Illinois.
Within each township, grassland, wetland, and forest sites
were selected using habitat-specific criteria (Molano-Flores
2002). At forest sites, shrub and tree plots were surveyed

along three 50-m transects. At wetland and grassland sites,
shrub and tree plots were surveyed along one 41-m transect.

We used shrub stem density data from shrub plots for the
following 11 invasive shrub species or species groups:
honeysuckles (Lonicera × bella, Lonicera japonica, Lonicera
maackii, Lonicera prolifera, Lonicera tatarica, Lonicera species
that were identified only to genus); Russian and autumn olive
(Elaeagnus angustifolia and Elaeagnus umbellata, respectively;
because 106 out of 110 observations of olives were autumn
olive, we refer to this group as autumn olive); buckthorns
(Rhamnus cathartica, Rhamnus frangula); and multiflora
rose (Rosa multiflora). We recorded a species as present at a
site if its shrub stem density was greater than 0, and absent
otherwise. We built a presence–absence model for each
species group (honeysuckle, autumn olive, buckthorn, or
multiflora rose) and an overall presence–absence model for
all 11 invasive shrubs combined using binomial logistic
regression and including year, longitude, latitude, a longitude–
latitude interaction, and a custom categorical land cover
variable we compiled because CTAP habitat classifications
do not readily translate to the land cover types we used
in our models of skunk, opossum, and raccoon relative
abundance. Specifically, we summarised underlying NLCD
land cover categories at CTAP sites as ‘Forest’ (NLCD land
cover categories 41, 42, 43, and 90), ‘Grassland’ (NLCD land
cover categories 21, 81, and 82), or ‘Other’ (all other NLCD
land cover categories), using the land cover category extracted
at the latitude and longitude of each CTAP site. We then
predicted the probability of each invasive species group’s
presence or overall invasive shrub presence at each spotlight
survey route segment midpoint for each custom categorical
land cover type. We calculated overall probability of invasive
species’ presence within each 1-km buffer, for each invasive
species group and for all invasive species combined, by taking
a weighted average of land-cover-type-specific predictions for
the segment midpoint weighted by the proportion of each
custom categorical land cover type within the buffer. This
resulted in local-scale and landscape-scale covariates describing
probability of invasive species’ presence for honeysuckles,
autumn olive, buckthorns, and multiflora rose, and all 11
invasive shrub species combined (Figs S8–S12).

We calculated spatial covariates at two scales, a local scale
and a landscape scale. At the local scale, spatial covariates
were rescaled so that each covariate measured how different
the covariate value in a given segment was to the average for
that route and year (e.g. how different the proportion of
agriculture at one segment in Adams County in 2001 was
from the average proportion of agriculture on the Adams
County route in 2001). At the landscape scale, we took the
mean of each covariate described above for each route and
year, then rescaled the means so that the landscape-scale
covariate measured how different each route was for the
average value for that year (e.g. how different the proportion
of agriculture along the Adams County route in 2001was from
the mean proportion of agriculture of all spotlight survey
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routes in 2001). This resulted in summaries, for each segment
for which we had counts, of how that segment differed from
the average for the route and how the route in which the
segment was located differed from the average from all
spotlight survey routes in the same year. These local- and
landscape-scale covariates were used in the same models of
spotlight counts, with segment-level counts as the response,
to compare the effects of local- and landscape-level statewide
variation in habitat. We describe the scaling process further
below in Statistical analysis, and summaries of unscaled
covariate values are given in Table S1.

Statistical analysis

We used a total of 17 646 observations in our analysis. We fit
generalised linear mixed models for each mesopredator
species with a Poisson likelihood using package lme4 (Bates
et al. 2015) in R ver. 4.1.1 (R Core Team 2021). All
candidate models, including a model without landscape
covariates (‘null model’), contained linear and quadratic
fixed effects of year, segment of the route surveyed, average
humidity, average temperature, and day of year, and a
random effect of route. These effects were included to
account for survey, ecological, and meteorological processes
that might affect detection probability. For instance, average
humidity and temperature reflected general meteorological
conditions that might affect animal behaviour and visibility,
day of year represented possible effects of time-varying survey
conditions such as the timing of leaf-out, which could obscure
animals, and the random effect of route captured other
possible, unmodelled route-specific variables that might
affect both relative abundance and detection. As observers
likely varied in their experience level, this variation in
experience level might be accounted for partially by a
random effect of observer. However, observer was often
confounded with route, because many observers only
surveyed one to two routes andmost routes had relatively few
observers over the study period. Therefore, we included only
a random effect of route. We fitted a total of 26 candidate
models for each mesopredator species. The models fell into
seven categories of landscape composition and potential
change drivers of mesopredator abundance (Table S2): urban
land cover; agriculture; forest; water; human structures (the
effects of housing density and road density); invasive
species (the effects of the probability of each invasive species
group’s presence or overall invasive species presence); or
other (the base model and a model of latitude, longitude,
and their interaction). We first fitted models of each covariate
at the local and landscape scales separately. We then combined
the top local- and landscape-scale covariates (as measured by
AIC) into a single model and compared models with and
without their interaction to the local-scale-only and landscape-
scale-only models using AIC. The goal of this analysis was not
to describe all factors affecting mesopredator relative
abundance, but to identify the factors with the greatest

explanatory ability at each scale and to understand whether
there was any interaction between the top drivers of meso-
predator relative abundance between scales. We reported
all models with ΔAIC < 2 as top models and ΔAIC < 8 as
competitive models that are potentially ecologically relevant
(Symonds andMoussalli 2011). We calculated AIC weight (w)
as wm = e−0.5×ΔAICm

Σm∈Me−0.5×ΔAICm
for each model m.

We scaled year, average temperature, average humidity,
and mile surveyed by subtracting the mean and dividing by
the standard deviation for the whole data set included in
our analysis. We scaled day of year by subtracting the mean
date and dividing by the standard deviation for all dates of
surveys on a given route (e.g. day of year for Adams County
surveys was scaled by the mean and standard deviation of
all survey dates for Adams County across all years). We
scaled landscape-scale covariates by subtracting the mean
and dividing by the standard deviation of the covariate at
all routes in a given year (e.g. we scaled landscape-scale
proportion of urban land cover in 2001 using the mean and
standard deviation of average proportion of urban land
cover along routes in 2001). We scaled local-scale covariates
by subtracting the mean and dividing by the standard
deviation for the same route and year (e.g. we scaled local-
scale proportion of urban land cover for Adams County in
2001 using the mean and standard deviation for Adams
County in 2001). We scaled local-scale covariates in this way
to test whether there was a local-scale effect of a covariate
regardless of landscape context that could be compared
across survey routes and years.

Results

Striped skunk models

The top model for skunk included local-scale proportion of
forest cover and landscape-scale probability of autumn olive
presence (w = 0.72; Table 1). Skunk relative abundance
decreased as local-scale proportion of forest cover increased
(β = −0.21, s.e. = 0.04) and increased as landscape-scale
probability of autumn olive presence increased (β = 0.40,
s.e. = 0.12) (Table S3, Fig. 2). After accounting for landscape-
scale covariates, skunk relative abundance also changed non-
linearly over time, and had non-linear relationships with
average temperature humidity and mile surveyed (Table S3).

Table 1. Top (ΔAIC < 2) and competitive (ΔAIC < 8) models for
relative abundance of striped skunks in Illinois, ranked by AIC weight (w).

K AIC ΔAIC w

Proportion of forest (local) + probability
of autumn olive (landscape)

14 6158.50 0.00 0.72

Proportion of forest (local) × probability
of autumn olive (landscape)

15 6160.50 2.00 0.26

Proportion of forest (local) 13 6166.20 7.70 0.02

E
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Virginia opossum models

The topmodel for opossum included local-scale probability of
multiflora rose presence and landscape-scale probability of
autumn olive presence (w = 0.63; Table 2). Opossum relative
abundance increased as local-scale probability of multiflora
rose increased (β = 0.07, s.e. = 0.02) and increased as
landscape-scale probability of autumn olive presence
increased (β = 0.60, s.e. = 0.09) (Table S4, Fig. 3). After
accounting for landscape covariates, opossum relative
abundance also increased non-linearly over time, increased as
average humidity increased, and had a non-linear relationship
with average temperature and mile surveyed (Table S4).

Northern raccoon models

The top models for raccoon were a model that included both
local- and landscape-scale proportion of agricultural land
cover (w = 0.62; Table 3), and the model with the interaction
(w = 0.38; Table 3). Raccoon relative abundance decreased as
local-scale proportion of agricultural land cover increased
(β = −0.06, s.e. = 0.007) and increased as landscape-scale

proportion of agricultural land cover increased (β = 0.19,
s.e. = 0.06) (Table S5, Fig. 4). After accounting for landscape
covariates, raccoon relative abundance also increased non-
linearly over time, and had non-linear relationships with
average temperature, mile surveyed, and survey date
(Table S5).

Discussion

We found that the factors best explaining skunk, opossum, and
raccoon relative abundance were highly variable and scale-
dependent (Figs S13–S15). Skunk relative abundance
decreased on mile segments with a higher proportion of
forest cover than the average mile on the route. Given the
negative correlation of local-scale proportion of forest cover
and agriculture along spotlight survey routes, this suggests
that skunks may have higher relative abundance in areas with
high relative proportions of agriculture. Contrary to previous
results, however, we found that skunks may be responding
more to higher proportions of agriculture relative to the
surrounding landscape (i.e. local-scale variation in agriculture),
rather than responding to the actual proportion of agricul-
ture on the landscape (landscape-scale variation in agriculture)
as expected (Gehring and Swihart 2003; Lesmeister et al.
2015). Opossum relative abundance was highly correlated
with invasive species’ probabilities of presence at multiple
scales; although proportion of forest cover had lower
explanatory ability than many invasive species’ probabilities
of presence,many of these invasive species’ probabilities were
highly correlated with forest cover. Raccoons displayed an
opposite response to agricultural land cover to that of skunks
at the local scale, occurring at higher relative abundances in
areas with higher proportion of forest cover than the
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Table 2. Top (ΔAIC < 2) and competitive (ΔAIC < 8) models for
relative abundance of Virginia opossums in Illinois, ranked by AIC
weight (w).

K AIC ΔAIC w

Probability of multiflora rose (local) +
probability of autumn olive (landscape)

14 13 828.96 0.00 0.63

Probability of multiflora rose (local) ×
probability of autumn olive (landscape)

15 13 830.27 1.31 0.33

Longitude × latitude 15 13 834.72 5.76 0.04

Probability of autumn olive (landscape) 13 13 836.95 7.98 0.01
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surrounding landscape. Surprisingly, raccoons responded
positively to proportion of agriculture at the landscape scale,
contrary to several previous results (Dijak and Thompson
2000; Gehring and Swihart 2003).

Overall, the results suggest that a brown-to-green gradient
(e.g. agriculture to natural areas; Padilla and Sutherland
(2021)) is a major factor in variation in mesopredator relative
abundance in Illinois. The brown-to-green gradient operated
at both scales, though there was little evidence of interaction
between scales (e.g. mediation of local-scale responses by
landscape context or actual composition). Considering scale
in responses to anthropogenic landscape change gradients such
as the brown-to-green gradient is crucial because responses to
the brown-to-green gradient could be opposite at different
scales. For instance, predicted raccoon relative abundance
was lower in agricultural areas at local scales but higher in
agricultural areas at landscape scales. The hard-to-soft gradient
was likely not a major factor along spotlight routes – spotlight

Pr
ed

ic
te

d 
m

ea
n 

ra
cc

oo
ns

 p
er

 s
eg

m
en

t

Pr
ed

ic
te

d 
m

ea
n 

ra
cc

oo
ns

 p
er

 s
eg

m
en

t

Scaled proportion of agriculture (local) Scaled proportion of agriculture (landscape)

1.2

1.4

1.6

1.8

2.0

1.0

1.5

2.0

2.5

3.0

–2 –1 0 1 2 –2 –1 0 1 2

(a) (b)

Fig. 4. Predicted relationship of mean northern raccoon count per spotlight survey route segment (~1.6 km per segment) to (a) local-
scale proportion of agriculture and (b) landscape-scale proportion of agriculture in the year 2017. All other variables in each plot are held at
values of 0 (average temperature and humidity, average survey date for the route, etc.). Ribbons are the confidence intervals for the
predictions accounting for error from fixed effects only.
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Fig. 3. Predicted relationship of mean Virginia opossum count per spotlight survey route segment (~1.6 km per segment) to (a) local-scale
probability of multiflora rose and (b) landscape-scale probability of autumn olive in the year 2017. All other variables in each plot are held at
values of 0 (average temperature and humidity, average survey date for the route, etc.). Ribbons are the 95% confidence intervals for the
predictions accounting for error from fixed effects only.

Table 3. Top (ΔAIC < 2) and competitive (ΔAIC < 8) models for
relative abundance of northern raccoons in Illinois, ranked by AIC
weight (w).

K AIC ΔAIC w

Proportion of agriculture (local) +
proportion of agriculture (landscape)

14 52 767.86 0.00 0.62

Proportion of agriculture (local) ×
proportion of agriculture (landscape)

15 52 768.84 0.98 0.38
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routes were generally located in rural areas where levels of
urbanisation and housing density were relatively low (Figs S1
and S5).

Surprisingly, invasive species’ probability of presence
often had similar or higher explanatory power relative to
local-scale proportion of forest or agricultural land cover,
particularly for opossums, and had generally positive effects
on relative abundance of our study species, contrary to our
predictions (Tables S6–S8). Skunk and opossum relative
abundance were strongly correlated with autumn olive
presence at the landscape scale. Landscape-scale probability
of autumn olive presence is negatively correlated with
latitude and positively correlated with proportion of forest
cover; their combination may be the best explanation for
opossum relative abundance (Kanda et al. 2006; Wait et al.
2020). Thus, landscape-scale probability of autumn olive
presence is likely in the top model for opossum because it
is more information-rich as a covariate than either latitude
or proportion of agriculture or forest. There is not as strong
evidence for positive effects of latitude and forest cover on
skunks in the literature, but the landscape-scale probability
of autumn olive presence by itself has relatively little
explanatory power for skunk relative abundance (Table S6).
Thus, the effect of landscape-scale probability of autumn olive
presence is likely describing the increased relative abundance
of skunks and especially opossums in southern Illinois, a
relatively warm and forested part of the state. However, the
presence of the local-scale probability of multiflora rose
presence among the top models for opossum suggests that
there may be some small-scale structural aspect of invasive
species’ presence to which opossums are responding. There
is some evidence that opossums increase activity in areas
with invasive shrubs, including buckthorn and honeysuckle
species (Dutra et al. 2011; Vernon et al. 2014). It is possible
that in parts of southern Illinois with lower population
density and higher forest cover, shrubby natural areas that
are increasingly affected by invasive species offer food or
refuge opportunities that outweigh the advantages of more
human-modified areas. Moreover, either the positive effects
of presence of invasive shrub species on opossums and
skunks, or their correlation with habitats suitable for opossums
and skunks in Illinois, apparently outweigh any of the potential
negative effects of early leaf-out and thick vegetation on
detection of mesopredators along spotlight survey routes
with a high probability of invasive species’ presence.

Our results for skunk, opossum, and raccoon relative
abundance models and models of invasive species’ presence
are likely influenced by the landscape context of both the
spotlight and vegetation surveys. Many of the spotlight
surveys were conducted in rural areas where the proportion
of urban land cover was low (2.7% of land cover within
1-km segment midpoint buffers on average). Thus, it may be
difficult to compare predictors of relative abundance from
spotlight surveys to predictors of occupancy from camera traps
in more urbanised areas (Wang et al. 2015; Wait et al. 2018;

Fidino et al. 2020), and urban land cover and housing
densitymay be so low alongmany spotlight survey routes that
their effects, if any, would be difficult to detect. Given the
relatively low urban land cover along many spotlight survey
routes, resource selection trade-offs for mesopredators along
these routes would likely involve balancing anthropogenic
food sources from primarily agricultural areas with foraging
opportunities in or near forests with higher prey abundance,
rather than attraction to or avoidance of heavily urbanised
areas. It is also possible that invasive shrubs’ presence at
CTAP sites may not reflect their presence within the broader
landscape. CTAP surveys include forest, grassland, and
wetland sites for every sampled location, but forest locations
are muchmore likely to be relatively small forest fragments in
northern Illinois than in southern Illinois, and wetland and
grassland sites may also be located in different kinds of
habitats throughout the state based on what sorts of grass-
lands are available (e.g. natural grasslands vs hayfields vs
cemeteries). Invasion routes for invasive shrubs may vary
throughout the state. Thus, invasive shrubs may be present
along spotlight survey routes even in areas where the pre-
dicted probability of presence is low. This could be verified
along some spotlight survey routes to improve predicted
probability of presence, or a presence–absence model could
be built using more sources of data (e.g. iNaturalist.com
records).

In addition to landscape context, it is possible that
intraguild species interactions affected the relative abundance
of skunks, opossums, and raccoons along spotlight survey
routes in Illinois. Skunks are known to co-occur with grey
foxes across the latter’s range in the contiguous USA (Allen
et al. 2022b), and raccoons tended to be detected along
with coyotes and bobcats in southern Illinois (Lesmeister
et al. 2015). Coyotes, red foxes, grey foxes, and bobcats all
occur in Illinois, and could be influencing the distributions
of the smaller carnivores we studied. However, intraguild
interactions are highly complex, and the spotlight data used
in this study face limitations in terms of study design that
make ecological inference about species interactions difficult.

Although the spotlight data used in this study provide a
valuable long-term (2001–2017) dataset to study factors
affecting relative abundance, multiple limitations in both
the data and modelling require that the results be interpreted
with caution. The primary limitation in the data set is that the
survey design did not allow us to account for imperfect
detection, which informed the choice of generalised linear
models for modelling relative abundance rather than abundance.
In general, relative abundance may not scale linearly with
abundance, particularly when detection probability is not
accounted for, so our results should not be interpreted as
inference on abundance. Survey routes were only run once
per year, at most, and no auxiliary data on time-to-detection
or distance to detected individuals were collected, thus
eliminating N-mixture (Royle 2004), distance sampling
(Ruette et al. 2003), or time-to-detection (Strebel et al. 2021)
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models. The lack of detection probability in our models also
means that it is impossible to fully differentiate between effects
of landscape covariates on abundance and detection. For
instance, the result that skunk relative abundance increased as
forest cover decreased may be due both to skunks’ attraction
to agricultural and other human-dominated landscapes and to
a decreased ability to detect skunks in forested areas.
However, given that the results of our models for opossum
and skunk largely followed predictions from studies that
accounted for detection probability (Lesmeister et al. 2015;
Wait et al. 2020; Allen et al. 2022b), we believe that our results
are still valid. However, we recommend altering spotlight
survey designs to account for distance to individuals, incorpo-
rate repeat surveys, or integrate time-to-detection (Strebel et al.
2021), allowing for true abundance to be estimated instead of
relative abundance.

Among factors included in the models to explicitly to
account for variation in detection, we found that aspects of
spotlight survey timing and weather conditions may affect
observed relative abundance of mesopredators. Predicted
skunk relative abundancewas highest when average tempera-
turewasmoderate and as average humidity increased (though
this effect was non-linear). Predicted opossum relative
abundance was highest when surveys were conducted earlier
than the average survey date for a given route, when average
humidity was higher and average temperature was moderate.
Predicted raccoon relative abundance was highest around
average survey dates for a given route, when average
temperature was moderate and when average humidity was
higher. Relative abundance had a non-linear relationshipwith
mile segment surveyed for all three species, with negative
coefficients implying that detection peaked near the middle
of surveys. Illinois spotlight survey protocols are based on
humidity and temperature recommendations from Rybarczyk
(1978), who only calculated correlations between temperature
and humidity and counts from spotlight surveys and thus did
not account for possible non-linear effects of humidity and
temperature. Therefore, temperature and average humidity
recommendations for spotlight surveys may need to be
adjusted tomaximise the probability of detectingmesopredators,
especially because these effects may be non-linear and thus
better represented by ranges of temperatures than minimum
temperatures.

In summary, we modelled relationships between skunk,
opossum, and raccoon relative abundance and various aspects
of anthropogenic landscape change using spotlight surveys in
Illinois. The results suggest that all three mesopredator
species may be responding to the brown-to-green gradient
in Illinois at multiple scales, or responding to invasive
species’ probabilities of presence that are themselves highly
correlated with brown-to-green gradients. Our results support
the idea that local landscape effects should be put in the
context of broader surrounding landscapes, and that potential
interactions between local and landscape scales should be
investigated (Fidino et al. 2020). Our results also suggest

that invasive shrubs’ presence or probability of presence may
be an aspect of landscape change that can affect mesopredator
presence and abundance at multiple spatial scales. More
broadly, our results demonstrate the complexity of landscape
change and how effects of landscape change onmesopredators
can depend on the landscape context, such as the degree of
human footprint from urbanisation and agriculture in the
surrounding landscape.

Supplementary material

Supplementary material is available online.
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