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multiple a priori landscape covariates and compared 
model predictive performance using cross-validation.
Results Our non-spatial occupancy model had 
greater predictive support than our spatial occupancy 
model. Mean annual statewide county-level occu-
pancy increased from approximately 0.43–0.83 while 
mean annual participant-level occupancy increased 
from approximately 0.07–0.28. Bobcats were pri-
marily restricted to southern Illinois during the early 
2000s but by 2018 occurred throughout western and 
southern Illinois. Landscape covariates had relatively 
weak effects on model parameters.
Conclusions Our study illustrates how community 
science observations analyzed with hierarchical occu-
pancy models can be used to model spatiotemporal 
changes in species distributions. Bobcats have recolo-
nized much of Illinois, but this colonization was not 
strongly mediated by county-level landscape features 
at the scales we measured.

Keywords Bobcat · Distribution · Lynx rufus · 
Occupancy · Expansion · Recolonization · Spatial 
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Introduction

Many carnivores, including grizzly bear (Ursos 
arctos), tiger (Panthera tigris), and leopard (Pan-
thera pardus), have declined during the last two 
centuries due to habitat loss and fragmentation and 

Abstract 
Context Many terrestrial mammals have undergone 
substantial distribution changes in recent decades; 
yet collecting broad-scale occurrence data for carni-
vores is difficult due to their low densities and cryptic 
behaviors. Carnivore observations from community 
(i.e., citizen) science programs can be a potentially 
valuable approach for understanding changes in car-
nivore distributions over long time periods.
Objectives We used 18  years of bobcat (Lynx 
rufus) observations collected by archery deer hunters 
(i.e.,  participants) across Illinois, USA, to estimate 
spatiotemporal patterns in occurrence and deter-
mine how landscape features influenced patterns of 
recolonization.
Methods We developed Bayesian spatial and non-
spatial multi-scale dynamic occupancy models to 
estimate county-level occupancy, persistence, and 
colonization and participant-level occupancy. We 
modeled county-level parameters as a function of 
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human-caused mortality for predator control or con-
sumptive use (Laliberte and Ripple 2004; Ripple 
et  al. 2014; Jacobson et  al. 2016; Wolf and Ripple 
2017; Marneweck et  al. 2021). However, other car-
nivores, including golden jackal (Canis aureus), lion 
(Panthera leo), gray wolf (Canis lupus), European 
otter (Lutra lutra), and European pine marten (Martes 
martes), have increased in abundance in recent dec-
ades due to conservation measures including reduc-
tions in human-caused mortality (Arnold et al. 2012; 
Blackburn et al. 2016; Chapron et al. 2014; Sainsbury 
et  al. 2019). Carnivore responses to human land-
scape alterations are often varied and may depend on 
life history traits (Sévêque et  al. 2020; Suraci et  al. 
2021), landscape composition and configuration 
(Nickel et al. 2020), and the existing carnivore com-
munity (Wang et  al. 2015; Rota et  al. 2016). Mosa-
ics of natural and human-modified habitats (e.g., 
urban and agriculture) may provide increased food 
resources (Bateman and Fleming 2012) or shelter 
from larger carnivores (Moll et  al. 2018). Medium-
sized carnivores (i.e., mesocarnivores) often benefit 
from the absence of larger carnivores and their abil-
ity to exploit human-modified landscapes (Hody and 
Kays 2018; Jachowski et  al. 2020). Increased carni-
vore abundance can have cascading effects on eco-
logical communities and systems (Estes et  al. 2011; 
Ripple et  al. 2014) and potentially lead to increased 
needs for managing human-wildlife conflict (Raithel 
et al. 2017; Lennox et al. 2018) and societal pressures 
for sustainable harvest (White et  al. 2015). Success-
fully managing the ecological, economic, and societal 
aspects of carnivore conservation therefore requires 
an accurate understanding of the patterns and causes 
of dynamic carnivore distributions.

Wildlife managers and conservationists need to 
understand species distribution changes across rela-
tively broad spatiotemporal extents (Jones 2011) as 
these are often the extents at which management deci-
sions are made (Mason et  al. 2006; Apollonio et  al. 
2010). However, systematic monitoring programs that 
would provide this type of understanding are often 
logistically and financially challenging to implement 
over broad spatiotemporal extents, even when col-
lecting only occurrence (i.e., detection/non-detec-
tion) data (Farhadinia et  al. 2018). This difficulty is 
particularly true for many carnivore species that are 
cryptic and occur at low densities (O’Connell et  al. 
2006). Community science (i.e., citizen science) may 

offer alternative means for collecting large amounts of 
occurrence data across broad spatiotemporal extents 
(Devictor et al. 2010; Dickinson et al. 2010), and can 
be used to monitor carnivores (Mueller et  al. 2019; 
Rafiq et al. 2019). Such community science data can 
be particularly valuable for modeling dynamic spe-
cies distributions by allocating sampling effort along 
shifting distribution margins where low densities or 
imperfect species detection may make detections by 
formal standardized surveys untenable (Crum et  al. 
2017; Molinari-Jobin et al. 2018).

Hierarchical occupancy models provide substan-
tial flexibility to account for multiple sources of vari-
ation within community science data to accurately 
model temporally dynamic species distributions. Like 
all field-based data, community science data suffers 
from imperfect detection, and failure to account for 
imperfect detection can result in biased or misleading 
inferences (Kery et al. 2010, 2013). Many community 
science programs use repeated site visits, that when 
analyzed using hierarchical occupancy models can 
account for imperfect detection (Kery et  al. 2010). 
Hierarchical occupancy models are particularly well 
suited for investigating range dynamics by modeling 
changes in site occupancy using first-order Markov 
processes and site colonization and extinction param-
eters (i.e., occupancy at time t is dependent upon 
occupancy status at time t−1 (MacKenzie et al. 2003; 
Royle and Kéry 2007). This approach is particularly 
useful for species with expanding and contracting 
ranges because site occupancy dynamics are likely 
spatially dependent such that sites near previously 
occupied sites will have higher colonization prob-
abilities (Hanski 1999; Bled et al. 2011; Heard et al. 
2013; Saura et al. 2014). Imprecise locations in citi-
zen science data can create challenges for modeling 
species-habitat relationships (Bauder et al. 2021), but 
multi-scale occupancy models permit the estimation 
of occupancy across multiple spatial scales (Nichols 
et al. 2008; Mordecai et al. 2011) thereby maximizing 
the information content of the data.

Bobcats (Lynx rufus) in Illinois, USA, provide an 
excellent case study with which to use community 
science data to model broad-scale carnivore distribu-
tions to quantify the recolonization of their  former 
range. Bobcats declined markedly in the Midwest 
USA, including Illinois, due to large-scale loss of 
forest and prairie to agriculture and potential over-
exploitation following European settlement in the 
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mid-1800s (Cory 1912; Mohr 1943; Larivière and 
Walton 1997; Woolf and Hubert 1998). Recreational 
harvest of bobcats in the Midwest USA was largely 
prohibited during the 1970s (Woolf et  al. 2000) and 
bobcats subsequently began recolonizing the region 
(Woolf et  al. 2002: Linde et  al. 2012; Prange and 
Rose 2020). However, the extent of recolonization 
remains poorly documented. For example, bobcats 
were largely restricted to southern Illinois and the 
Mississippi and Illinois River corridors in western 
Illinois at the beginning of the millennium (Woolf 
et  al. 2002) yet subsequent occurrence patterns are 
poorly understood. In 2016, the population of bobcats 
in Illinois was deemed sufficiently recovered to allow 
recreational harvest (Jacques et al. 2019). It is there-
fore important to understand both the past and current 
distribution of bobcats within Illinois to inform har-
vest regulations.

Bobcats within the Midwest USA are positively 
associated with natural land covers, including for-
est, grassland, and wetland, and negatively associ-
ated with row-crop agriculture (Woolf et  al. 2002; 
Tucker et  al. 2008; Linde et  al. 2012; Clare et  al. 
2015; Popescu et  al. 2021). Whereas some studies 
have found negative associations between bobcats 
and human development (Riley et al. 2003; Ordenana 
et al. 2010; Lesmeister et al. 2015), others have found 
more varied responses to human development and 
activity (Wang et  al. 2015; Wait et  al. 2018; Nickel 
et al. 2020). Bobcats in this region are also positively 
associated with natural habitat heterogeneity and 
edge (Preuss and Gehring 2007; Tucker et  al. 2008; 
Linde et al. 2012; Wait et al. 2018) that may increase 
foraging opportunities and prey abundance (Litvaitis 
et al. 1986). However, forest and prairie cover in Illi-
nois remains low relative to pre-European settlement 
levels (Iverson 1988; Walk et  al. 2010). In highly 
altered landscapes, remnant patches of natural habi-
tat may be important in promoting carnivore move-
ment and recovery (Kramer-Schadt et al. 2004; Suraci 
et al. 2020; Popescu et al. 2021). However, carnivores 
(Hawley et  al. 2016), including bobcats (Johnson 
et al. 2010; Hughes et al. 2019), have high dispersal 
potential and dispersing individuals may show lower 
habitat selectivity compared to resident adults (Elliot 
et  al. 2014). These dispersal tendencies may miti-
gate the effects of anthropogenic landscape change 
for recovering carnivores and permit recolonization 
through relatively less connected landscapes.

We examined the spatiotemporal patterns of occur-
rence and colonization for bobcats in Illinois to 
describe the extent of recolonization and determine 
how landscape features may have influenced this 
process. Specifically, we analyzed 18  years of state-
wide observations by archery deer hunters using spa-
tial and non-spatial multi-scale dynamic occupancy 
models to account for multiple sources of variation 
and uncertainty. We hypothesized that, given expan-
sion of occurrence of bobcats across the Midwest and 
USA (Roberts and Crimmins 2010), their occupancy 
would increase during our study at multiple spatial 
scales. Our second hypothesis was that changes in 
occupancy for bobcats would reflect habitat suitabil-
ity and therefore predicted occupancy, colonization, 
and persistence for bobcats would have positive rela-
tionships with natural land cover amount and hetero-
geneity and have negative relationships with anthro-
pogenically disturbed habitats (i.e., agriculture and 
urban land covers). Our third, and alternative, hypoth-
esis was that high dispersal potential would result in 
temporal patterns of occupancy for bobcats that was 
largely independent of landscape features. We accord-
ingly predicted relatively weak relationships between 
occupancy, colonization, and persistence and land-
scape features and stronger empirical support for our 
occupancy model incorporating the spatial arrange-
ment of occupied sites.

Methods

Study area

Our study area included the entire state of Illinois 
which we describe in detail in Bauder et  al. (2020) 
but briefly recount here. Illinois landscape composi-
tion varies latitudinally with the Chicago metropoli-
tan area occurring in the northeast, intensive row-crop 
agriculture (primarily corn and soybean) dominating 
the northwest and central regions, and forest-agricul-
ture mosaics with moderate topographic relief preva-
lent in southern Illinois (Fig. 1). Private lands make 
up over 95% of all Illinois (Prairie State Conservation 
Coalition 2022) and approximately 75% of Illinois 
is used for agriculture (U.S. Department of Agricul-
ture 2017). The composition of Illinois’ land covers 
did not change markedly during our study. Statewide 
elevation ranged from 85–380  m above sea level. 
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Monthly minimum, maximum, and mean tempera-
tures during our study ranged from −36.1 to 29.6 °C, 
−23.7 to 41.2  °C, and −11.7 to 28.5  °C, respec-
tively. Monthly minimum, maximum, and mean pre-
cipitation totals ranged from 0–1 cm, 24–42 cm, and 
5–11 cm, respectively, with most precipitation falling 
April through October as rain (llinois Climate Net-
work 2022).

Data collection

We used observations of bobcats from participat-
ing archery deer hunters during 2001–2018. Hunt-
ers were randomly sampled from adult Illinois resi-
dents who purchased archery permits, with the same 
hunters  often participating multiple years. We sam-
pled with replacement annually to replace hunters 
removed from the sample for non-participation. Hunt-
ers selected in the program (hereafter participants) 
received a standardized data sheet (i.e., species check-
list) in the mail prior to the start of the archery deer 
hunting season (1 October) and collected data through 
14 November as described in Bauder et  al. (2021). 
Specifically, during each hunting event, participants 

recorded the date, county hunted, time period (AM or 
PM, hereafter period), number of hours hunted, and 
number of target wildlife species (including bobcats) 
seen. We excluded incomplete or potentially errone-
ous records from subsequent analyses but did not oth-
erwise subset our data. Although the number of par-
ticipants hunting per county varied spatiotemporally, 
our hierarchical Bayesian model fully propagates 
parameter uncertainty due to sampling error from 
poorly sampled counties. We assumed that each par-
ticipant hunted within the same general area within 
a given county during a given year. We believe this 
is a  reasonable  assumption given the prevalence of 
stand-based archery deer hunting (92.3% of surveyed 
archery deer hunters during 2015; C. Miller, unpub-
lished data) and private land hunting within Illinois 
(> 80% of all archery deer hunters hunted exclusively 
on private lands in 2017, C. Miller unpublished data). 
We therefore considered multiple periods from the 
same hunter in the same county as repeated site visits.

Fig. 1  Map of major river 
drainages and contemporary 
(2008) forest cover in Illi-
nois. Northern boundary of 
the estimated distribution of 
bobcats during the 1970s is 
indicated by the thick black 
line (modified from Woolf 
and Hubert 1998)
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Occupancy model

We combined previous applications of multi-scale 
(Nichols et  al. 2008; Mordecai et  al. 2011), spa-
tial (Chandler et  al. 2015; Zylstra et  al. 2019), and 
dynamic (MacKenzie et  al. 2003; Royle and Kéry 
2007) occupancy models to model changes in occu-
pancy of bobcats over time while accounting for 
imperfect detection. We accounted for the hierarchi-
cal nature of our data by modeling county- (ψ) and 
participant-level (θ) occupancy where the latter rep-
resented the probability that a bobcat was present 
within the effective sampling area of participant j 
conditional upon bobcats occurring within county i 
during year t such that:

The latent occupancy states for counties and par-
ticipants are denoted by z and u, respectively. We then 
included an observation process assuming imper-
fect detection by participant j across period k so that 
detection probability was modeled as:

We modeled ψ during the first year directly as a 
Bernoulli variable: zi,1 ∼ Bernoulli(ψi,1) . We then 
estimated county-level occupancy during all subse-
quent years as a function of county-level probability 
of persistence (φ) if a county was occupied (zi,t = 1) 
and probability of colonization (γ) if a county was 
unoccupied (zi,t = 0):

Colonization and persistence are likely to vary 
depending on the proximity and arrangement of occu-
pied sites (Hanski 1999). Bobcats likely recolonized 
Illinois from the southernmost counties (Woolf and 
Hubert 1998; Woolf et  al. 2002). We therefore esti-
mated pairwise colonization probabilities (ρ) between 
all counties using a Gaussian distance-decay function 
(Chandler et al. 2015). Under this model, the proba-
bility that county i becomes colonized by at least one 
individual from county j during year t is:

zi,t ∼ Bernoulli(ψi,t)

ui,t,j|zi,t ∼ Bernoulli(�i,t,j)

yi,t,j|ui,t,j ∼ Bernoulli(pi,t,j,k)

zi,t+1|zi,t ∼ Bernoulli(�i,t(1 − zi,t) + �i,tzi,t)

�i,t = �0 exp(−d
2
i,j
∕(2�2))zi,t

where ρ0 is a baseline colonization probability which 
can be modeled as a function of covariates and d2

i,j 
is the Euclidean distance between the centroids of 
counties i and j. Counties in Illinois were generally 
similar in size (mean = 1410   km2, SD = 578   km2, 
range = 415–3065   km2, coefficient of varia-
tion = 41.0%) so we did not expect biases from larger 
counties having more distant centroids. The scale 
parameter (σ) determines the colonization probability 
decay rate. This parameterization ensures that county 
i cannot be colonized by individuals from county j if 
the latter is unoccupied (i.e., zi,t = 0). We then calcu-
lated the cumulative probability of colonization for 
county i between years t and t + 1 based on the occu-
pancy status of and distance from all Illinois counties 
as:

The spatial arrangement of occupied counties 
could also influence persistence such that counties 
neighboring occupied counties have a higher prob-
ability of becoming recolonized immediately after 
becoming unoccupied (Hanski 1999). To incorpo-
rate such spatial effects on persistence we included 
a pseudo-rescue effect as: �i,t = 1 − �i,t(1 − �i,t) to 
allow occupied counties to become unoccupied (i.e., 
extinct) and subsequently recolonized between years 
t and t + 1 (Chandler et  al. 2015; Sutherland et  al. 
2014).

Landscape covariates

We measured landscape covariates using National 
Land Cover Data (NLCD) from 2001, 2004, 2006, 
2008, 2011, 2013, and 2016 (30-m pixels; available at 
https:// www. mrlc. gov downloaded on 24 Feb 2020). 
We re-projected each raster to NAD83 and reclassi-
fied each raster into eight classes (Supplementary 
Material, Table  S1). We used the R (R Core Team 
2020) package landscapemetrics (Hesselbarth et  al. 
2019) to calculate the proportion of each county that 
was forest, grassland, agriculture, urban, and wet-
land, county-level patch density, mean patch area, 
and clumpiness index for forest, grassland, agricul-
ture, and wetland. We used the landscape metrics 
from the NLCD image closest in date to each par-
ticipant’s observation. We calculated county-level 
percent stream area (i.e., stream density) using NHD 

�i,t = 1 − Π(1 − �i,j,t)

https://www.mrlc.gov
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flow lines data (U. S. Geologic Survey 2020) because 
natural habitats within the midwestern USA may be 
more concentrated along riparian areas (Tucker et al. 
2008). We examined our covariates for collinearity 
and retained a single covariate from covariate pairs 
where |r ≥|  0.70. Our final landscape covariate list 
included the proportion of forest cover, forest patch 
density, forest clumpiness index, grassland mean 
patch area, grassland clumpiness index, the propor-
tion of wetland cover, wetland patch density, percent 
stream area, and the proportion of urban cover. Lower 
values of clumpiness index indicate increasingly 
disaggregated and decreasingly clumped patches of 
a given land cover class independent of patch area 
(McGarigal et  al. 2002). Collinearity was relatively 
low across these covariates (|r| < 0.70 and variance 
inflation factors < 5.00, Table S2). We z-score stand-
ardized all covariates.

Model fitting

We modeled initial county-level occupancy (ψt=1), 
persistence (φ), and baseline colonization (ρ0) as 
logit-linear functions of the nine landscape covariates 
described above because landscape characteristics 
could affect different aspects of bobcats recoloniza-
tion, particularly along the distribution margin and in 
highly anthropogenically modified landscapes such as 
Illinois. We modeled participant-level occupancy (θ) 
using additive Gaussian-distributed random effects 
of county and year because we lacked sub-county 
locality data for individual participants. We also mod-
eled baseline colonization and detection (p) using a 
Gaussian-distributed random effect of year. We mod-
eled persistence using a fixed linear effect of year 
because a random effect of year would not converge. 
We specifically predicted that the aforementioned 
parameters (except colonization) would increase as 
bobcats recolonized Illinois. We additionally modeled 
detection as a function of the number of hours hunted 
per period and whether a period was during AM or 
PM hours. Finally, to account for bobcats being most 
abundant in southern Illinois at the beginning of our 
study (Woolf and Hubert 1998; Woolf et  al. 2002), 
we modeled initial county-level occupancy as a linear 
function of the Euclidean distance (km) of each coun-
ty’s centroid from the southernmost point in Illinois.

To evaluate the effects of spatial dependence in 
county-level colonization, we also fit a non-spatial 

dynamic multi-scale model where we estimated 
county-level colonization (γ) without regards to 
neighboring occupancy status. We included the same 
covariates (fixed and random effects) in the non-spa-
tial model as in the spatial model. To account for the 
hypothesized northward expansion of bobcats in Illi-
nois within our non-spatial model, we also  included 
distance from the southern boundary of Illinois as a 
covariate for all non-spatial model parameters. We 
compared the predictive performance of the spatial 
and non-spatial models using five-fold cross-valida-
tion. We randomly partitioned counties into five folds 
and used four folds for model training and predicted 
survey-level occupancy for the fifth fold. We then 
calculated model deviance using the observed and 
predicted survey-level occupancy values (Miller and 
Grant 2015).

We specified weakly informative priors for all 
parameters to account for the relative sparseness of 
our data and provide a degree of regularization during 
parameter estimation. We assessed the sensitivity of 
our estimated and derived parameters to prior choice 
and found our inferences to be consistent across dif-
ferent reasonable formulations for weakly informative 
priors. We specified a logistic prior for intercepts in 
regression models, α ~ Logistic (μ = 0, σ = 1) (North-
rup and Gerber 2018; Zylstra et  al. 2019). We used 
Gaussian(μ = 0,  σ = 1.648) priors for all coefficient 
estimates following (Chandler et al. 2015) which pro-
vided a degree of regularization for our estimates. We 
used a Gamma (1,1) prior for sigma.

We fit our models in a Bayesian framework using 
JAGS (v. 4.3.0, Plummer 2003) called from R (v. 
4.0.2, R Core Team 2020) through the package jag-
sUi (v. 1.5.1, Kellner 2019, see Appendix 1 for code). 
We ran 25,000 adaptive iterations and 75,000 burn-in 
iterations across three parallel Markov chains before 
sampling an additional  100,000 iterations from the 
posterior distribution while retaining every  10th pos-
terior sample. We visually assessed MCMC chain 
convergence and mixing and ensured that Gelman-
Rubin statistics (Ř) were ≤ 1.01 and ≤ 1.18 for all 
coefficient parameters in the non-spatial and spatial 
models, respectively (Brooks and Gelman 1998; Gel-
man and Hill 2006). We report means, 68% CRI (16th 
and 84th percentiles) and 95% CRI (2.5th and 97.5th 
percentiles) of parameter posterior distributions. We 
also calculated posterior probability values for all 
covariate posteriors as the proportion of posterior 
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samples with the same sign (positive or negative) as 
the posterior mean (Zylstra et al. 2019). We compared 
posterior probabilities between the spatial and non-
spatial models using paired t-tests. We also report 
the mean annual statewide participant-level occu-
pancy. Finally, we calculated the finite estimates of 
mean annual statewide county-level occupancy and 
the finite estimates of annual county- and participant-
level occupancy for each county and year as derived 
estimates.

To better understand how our occupancy estimates 
reflected trends in the abundance of bobcats, we cal-
culated an index of bobcats abundance used by the 
Illinois Department of Natural Resources (IDNR). 
Specifically, we divided the total number of bobcats 
seen per hunter-county per year by the total number 
of hours hunted per hunter-county per year. We aver-
aged these values for each year and multiplied them 
by 1000 for consistency with previous estimates from 
IDNR. We calculated Spearman’s correlation coeffi-
cient (rs) between the annual index of bobcats abun-
dance and each posterior estimate of mean annual 
statewide county-level occupancy. We also calculated 
rs between our index and the finite annual participant-
level occupancy for each county and year.

Results

We collected data annually from participants in 
100–102 of Illinois’ 102 counties. The total number 
of participants annually ranged from 990 to 2785 
(mean = 1646, SD = 463) and the mean number of 
participants per county per year was 16 (SD = 10, 
range = 1–73). The mean number of periods hunted 
per participant was 13 (SD = 12, range = 1–90) and 
the mean number of hours hunted per period was 
2.87 (SD = 0.91, range = 0.10–7.00). Bobcats were 
recorded during 0.89% of periods (3525 of 396330 
visits). Euclidean distance between county centroids 
ranged from 18.5 to 585.7 km (median = 209.0 km).

Detection ranged from 0.02 to 0.23 across our 
observed range of hours hunted per period and 
the duration of our study (Supplementary Mate-
rial, Fig. S1). Detection increased with the number 
of hours spent afield (mean posterior = 0.26, 95% 
CRI = 0.22–0.29, posterior probability = 1.00) and 
was greater during AM compared to PM hours (mean 
posterior = -0.15, 95% CRI = -0.22– -0.08, posterior 

probability = 1.00). There was evidence of an increas-
ing trend in detection during our study (mean poste-
rior of Pearson’s r = 0.44, 95% CRI = 0.22–0.63, Sup-
plementary Material, Fig. S1).

The non-spatial model had higher predictive per-
formance than the spatial model (deviance = 36768.35 
vs. 37059.68, respectively; Δ deviance = 291.33). We 
therefore present the results of the spatial model in 
Appendix  2 and focus the main text on the results 
from the non-spatial model. Landscape covariate 
effects on initial county-level occupancy were gener-
ally similar between the spatial and non-spatial mod-
els (median posterior probability = 0.70 and 0.76, 
respectively; P = 0.66; Fig.  2; Supplementary Mate-
rial, Tables S3 & S4). The landscape covariates for 
initial county-level occupancy with the highest pos-
terior probabilities in the non-spatial model were 
forest patch density, forest cover, and wetland patch 
density (0.92, 0.90 and 0.88, respectively) which all 
showed positive associations with occupancy (Fig. 2; 
Supplementary Material, Table S3). The relationship 
with distance to southern Illinois was weakly posi-
tive in the non-spatial model (mean posterior = 0.89, 
95% CRI = −0.99–2.99, posterior probability = 0.82, 
Fig. 2; Supplementary Material, Table S3) in contrast 
to the much weaker effect of this covariate in the spa-
tial model (posterior probability = 0.64; Supplemen-
tary Material, Table S4).

Landscape covariate effects were generally weak 
and similar for county-level colonization in both the 
spatial and non-spatial model (median posterior prob-
ability = 0.63 and 0.64, respectively; P = 0.48; Fig. 2; 
Supplementary Material, Tables S3 & S4). However, 
colonization in the non-spatial model was strongly 
positively associated with mean grassland patch size 
and forest clumpiness (posterior probability = 0.94 
and 0.95, respectively) with a much weaker positive 
effect of forest patch density (posterior probabil-
ity = 0.74; Fig. 2). There was no evidence of a trend 
in colonization probability across our study (Supple-
mentary Material, Fig. S2).

Landscape covariates had somewhat stronger 
effects on persistence in both the spatial and non-
spatial model (median posterior probability = 0.82 
and 0.78, respectively; P = 0.37). Forest patch density 
and forest cover had relatively strong positive effects 
(posterior probabilities = 0.94 and 0.88, respectively) 
while stream area had a weaker positive effect (pos-
terior probability = 0.80; Fig.  1; Supplementary 
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Material, Table  S4). Persistence increased strongly 
over the course of our study (posterior probabil-
ity = 1.00). When holding all other covariates con-
stant at their mean using the non-spatial model, per-
sistence increased from 0.11 (95% CRI = 0.008–0.35) 
during 2001 to 1.00 (95% CRI = 1.00–1.00) during 
2017 (Fig. 3).

Statewide county-level occupancy from the non-
spatial model increased from approximately 0.43 
in 2001 to 0.83 in 2018 (Fig.  4a). Eighty-seven and 
73 of Illinois’ 102 counties had occupancy ≥ 0.50 
and 0.90, respectively, during 2018 (Fig.  5c). Mean 
annual statewide participant-level occupancy also 
increased during our study from approximately 
0.07–0.28 (Fig. 4a). Our non-spatial model indicated 
that bobcats were predominately restricted to south-
ern Illinois at the beginning of our study although 
predicted occupancy values were moderate to high in 

northern Illinois. However, northward recolonization 
was mostly concentrated along the Mississippi and 
Illinois river drainages in western and central Illinois, 
respectively (Fig.  5). Finite annual participant-level 
occupancy by county between the spatial and non-
spatial models were highly correlated (rS = 0.999; 
Supplementary Material, Fig. S4). Our index of abun-
dance for bobcats increased during our study and was 
highly correlated with mean annual statewide county-
level occupancy (mean posterior rS = 0.86, 95% 
CRI = 0.73–0.93, Fig. 4b). Our index was also highly 
correlated with participant-level occupancy from the 
spatial and non-spatial models (rS = 0.83) albeit with 
substantial variation (Supplementary Material, Fig. 
S5).

Fig. 2  Means, 68% (thick 
bars), and 95% (thin bars) 
credible intervals (CRI) 
from the posterior coeffi-
cient distributions for initial 
county-level occupancy 
(ψ), colonization (ρ or γ), 
and persistence (φ) from 
multi-scale dynamic spatial 
and non-spatial occupancy 
models for bobcats (Lynx 
rufus) in Illinois, USA, 
during 2001–2018. All 
covariates were measured at 
the county-level and z-score 
standardized
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Discussion

As the distributions of both native and invasive spe-
cies continue to change due to anthropogenic land-
scape alterations and climate change, accurate esti-
mation of these dynamic distributions will become 
increasingly important for species and ecosystem 
management and conservation. These estimates must 
account for diverse sources of variation, including 
imperfect detection and spatiotemporal variation in 
species occurrence. We addressed these concerns 
using 18 years of community science data and hier-
archical models to estimate patterns of recolonization 
for bobcats across a highly anthropogenically modi-
fied landscape. Our results support the hypothesis 
that bobcats have recolonized Illinois as county- and 
participant-level occupancy, county-level persis-
tence, and detection probabilities all increased dur-
ing our study. Moreover, participant-level occupancy 
by county was strongly correlated with an index of 
abundance for bobcats derived from our community 
science observations, although we observed sub-
stantial variation around this relationship making it 
unclear how well participant-level occupancy esti-
mates may serve to monitor bobcat abundance at the 
county level. The apparent recolonization of bobcats 
in Illinois follows similar trends of mesocarnivore 

expansion around the globe (Arnold et al. 2012; Hody 
and Kays 2018; Molinari-Jobin et  al. 2018). Our 
use of community science data provided consistent 
and substantial annual survey effort across a broad 
extent (approximately 150,000   km2) even in areas 
where bobcats were scarce or absent. This allocation 
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of sampling effort across multiple years beyond the margins of a species’ distribution highlight an 
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important advantage of community science projects 
over more traditional and labor-intensive sampling 
methods (e.g., mark-recapture, telemetry) in mod-
eling both species range expansions and contractions 
(Molinari-Jobin et al. 2018). This role of community 
science will grow more important as climate change 
continues to affect biotic communities resulting in 
shifts in species ecological niches and subsequent 
range shifts (Dickinson et al. 2010).

Surprisingly, we did not find support for includ-
ing a spatial component to our model of coloniza-
tion of bobcats. The non-spatial model had greater 
predictive performance although statewide county-
level occupancy trends were similar between the two 
models. Furthermore, both models predicted high-
est occupancy in southern Illinois with subsequent 
expansion largely following the major river drain-
ages of the Mississippi and Illinois Rivers in western 
and central Illinois, respectively (Woolf et  al. 2000, 
2002). While we expected the spatial model to per-
form better, as unmodeled heterogeneity can lead to 
misleading inferences when modeling dynamic spe-
cies distributions (Broms et al. 2014), we believe our 
use of landscape covariates accounted for some spa-
tial heterogeneity in the colonization process. Some 
of our covariates had weaker effects in the spatial 
model which further suggests that, in the absence of 
a spatial component, our non-spatial model estimated 
greater landscape effects to account for spatial rela-
tionships in occupancy. In landscapes with marked 
spatial heterogeneity in land cover and high levels 
of landscape disturbance, landscape covariates may 
be sufficient to account for spatial dependencies in 
dynamic distributions for species associated with nat-
ural land covers. The widespread prevalence of agri-
culture in Illinois, particularly in central Illinois, may 
have allowed landscape covariates to sufficiently cap-
ture changes in bobcat distribution given this species’ 
association with natural, particularly forest, land cov-
ers. However, both models predicted relatively high 
occupancy for bobcats in northeast Illinois despite a 
paucity of observations of bobcats in this area dur-
ing the early years of our study. Bobcat observations 
are also scarce directly north of Illinois (i.e., south-
ern Wisconsin) (Clare et al. 2015; Allen et al. 2019). 
However, bobcats were reported from these northern 
counties in the early 2000s (Woolf et  al. 2002) and 
detected in the area during the intermediate years of 
our study.

The relatively moderate effects of landscape fea-
tures on bobcat  recolonization within Illinois were 
somewhat surprising given bobcats’ association with 
forest (Woolf et  al. 2002; Tucker et  al. 2008; Clare 
et al. 2015; Popescu et al. 2021) and wetlands (Clare 
et al. 2015). Nevertheless, we did find generally posi-
tive, albeit relatively weak, effects of forest on initial 
county-level occupancy, colonization and persistence 
as we hypothesized. The positive relationship between 
grassland patch size and colonization is consistent 
with previous research showing positive associations 
between bobcats and grassland and grassland-forest 
mosaics in the Midwest (Linde et al. 2012). We sug-
gest several non-mutually exclusive hypotheses to 
explain our lack of stronger landscape effects. First, 
there was a mismatch between the scales at which we 
measured landscape covariates (i.e., the county) and 
the scales at which our observations occurred (i.e., the 
participant) (sensu Bauder et al. 2021). Second, high 
dispersal potential in bobcats (203–288 km, Johnson 
et al. 2010; Hughes et al. 2019) may permit recoloni-
zation of a portion of a county that may not be indica-
tive of the general landscape features of that county. 
For instance, agriculturally dominated counties may 
still have pockets of suitable habitat for bobcats that 
may act as stepping stones and therefore increase an 
individual’s dispersal potential (Saura et  al. 2014). 
Finally, occupancy is a relatively low-resolution state 
variable compared to abundance or density (He and 
Gaston 2000; MacFarland and Van Deelen 2011; but 
see Clare et  al. 2015) and it may be that these finer 
resolution state variables show a greater response to 
landscape features.

Our results indicate a more restricted distribution 
for bobcats in Illinois than reported by earlier studies 
using observations from the 1980s and 1990s (Woolf 
et al. 2000, 2002), and we offer some potential expla-
nations for these discrepancies. First, Woolf et  al. 
(2000, 2002) predominately used observations from 
successful deer and turkey hunters and the Illinois 
Natural Heritage Database which likely were less sys-
tematic or rigorous than our statewide observations 
from archery deer hunters. Our community science 
data were collected from randomly selected partici-
pating hunters across the entire state with most coun-
ties having data from multiple hunters during each 
year. Second, we accounted for the dynamic nature of 
bobcat distributions within Illinois rather than pool-
ing all observations into a single sampling event. 
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Pooling observations over multiple years, particularly 
for species with dynamic distributions and potential 
turnover among sampling units at the margin of the 
range, may overestimate a species’ distribution. We 
therefore suggest that our distribution estimates rep-
resent a more conservative and accurate estimate, 
which is often ideal when managing a hunted popula-
tion or species of concern.

We acknowledge four limitations to our study. 
First, we were unable to validate our assumption 
that hunters hunted in the same area within a county 
during a year. However, this assumption was reason-
able within our study system given the prevalence of 
stand-based archery hunting and private land hunting 
in Illinois. Second, the number of participants varied 
widely across counties, sometimes as few as a single 
participant, which creates additional sampling error 
and could reduce parameter precision. However, our 
multi-scale occupancy model fully propagates this 
uncertainty throughout our analyses thereby fully 
representing the uncertainty due to uneven sampling 
effort. Third, community science data can sometimes 
have false-positives (Clare et  al. 2019), and we did 
not account for false-positives in our model which 
may positively bias occupancy estimates (Royle and 
Link 2006; Chambert et  al. 2015). Unfortunately, 
our sampling design and low detection rates did not 
allow us to estimate a false-positive rate. While bob-
cats are the only native felid in Illinois, domestic 
cats (Felis catus) were also observed by participants 
and could potentially be mistaken for bobcats. We 
therefore encourage additional research to estimate 
the false-positive rate for observations of bobcats by 
community scientists. Finally, modeling participant-
level occupancy using random effects of county and 
year may have left additional heterogeneity unmod-
eled. Ideally, more precise participant locality could 
be used to obtain landscape covariates at the scale of 
each participant’s effective sampling area which could 
account for within-county heterogeneity in landscape 
features. However, such data were unavailable for our 
study. Another possibility is to use of integrated mod-
eling approaches to incorporate more precise and/or 
systematically collected data sources (e.g., camera 
trap or telemetry data; Miller et al. 2019; Gilbert et al. 
2021).

Conclusion

Our research illustrates the utility of using commu-
nity science programs and hierarchical occupancy 
models that account for the appropriate uncertainties 
and dependencies to estimate changes in species dis-
tributions. This is particularly important for species 
which are substantially expanding or contracting in 
geographic range, for whom traditional data collec-
tion methods are not logistically or financially feasi-
ble. Community science programs are able to obtain 
large samples across large spatial extents, thereby 
facilitating long-term monitoring efforts. For exam-
ple, estimates of county-level occupancy for bobcats 
from archery hunter observations and hierarchical 
occupancy models appear valuable for monitoring 
statewide trends in occurrence of bobcats across Illi-
nois. We encourage additional research exploring the 
utility of using counts of bobcats from archery hunt-
ers in combination with hierarchical abundance mod-
els that account for false-positives (Royle 2004; Dail 
and Madsen 2011) to estimate the abundance of bob-
cats while accounting for imperfect detection.
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